The influence of wax content on the physical properties of low-density polyethylene-wax blends

2003 ◽  
Vol 52 (6) ◽  
pp. 999-1004 ◽  
Author(s):  
V Djokovi? ◽  
TN Mtshali ◽  
AS Luyt
2013 ◽  
Vol 701 ◽  
pp. 202-206
Author(s):  
Ahmad Aroziki Abdul Aziz ◽  
Sakinah Mohd Alauddin ◽  
Ruzitah Mohd Salleh ◽  
Mohammed Iqbal Shueb

Effect of nanoMagnesium Hydroxide (MH) nloading amount to the mechanical and physical properties of Low Density Polyethylene (LDPE)/ Poly (ethylene-co vinyl acetate)(EVA) nanocomposite has been described and investigated in this paper. The tensile strength results show that increased amount of nanofiller will decrease and deteriorate the mechanical properties. The elongation at break decreased continuously with increasing loading of nanofiller. Generally, mechanical properties become poorer as loading amount increase. Melt Flow Index values for physical properties also provide same trend as mechanical properties results. Increase filler amount reduced MFI values whereby increased resistance to the flow.


2012 ◽  
Vol 31 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Tapas Kuila ◽  
Saswata Bose ◽  
Ananta Kumar Mishra ◽  
Partha Khanra ◽  
Nam Hoon Kim ◽  
...  

2003 ◽  
Vol 11 (4) ◽  
pp. 309-321 ◽  
Author(s):  
Harumi Sato ◽  
Masahiko Shimoyama ◽  
Taeko Kamiya ◽  
Toru Amari ◽  
Slobodan Šašiç ◽  
...  

The aim of the present study is to investigate in detail the near infrared (NIR) spectra of the three types of polyethylene, linear low-density polyethylene (LLDPE), low-density polyethylene (LDPE) and high-density polyethylene (HDPE), and to develop calibration models that predict their physical properties such as density, crystallinity and melting point. The effects of spectral resolution on the classification and the prediction of density for the three types of PE have been investigated. Furthermore, the NIR spectral differences among LLDPE, LDPE and HDPE have been explored in more detail using 2 cm−1 resolution. Principal component analysis (PCA) has been performed to differentiate the 18 samples of PE. They are classified into three groups, LLDPE, LDPE and HDPE, by a score plot of the PCA Factor 1 versus 3 based on the NIR spectra pretreated by multiplicative scatter correction (MSC). The 2 cm−1 spectral resolution yields a slightly better result for the classification. Partial least squares (PLS) regression has been applied to the NIR spectra after MSC to propose calibration models that predict the density, crystallinity and melting point of HDPE, LDPE and LLDPE. The correlation coefficient for the density was calculated to be 0.9898, 0.9928, 0.9925 and 0.9872 for the spectra obtained at 2, 4, 8 and 16 cm−1 resolutions, respectively, and the root mean square error of cross validation ( RMSECV) was found to be 0.0021, 0.0018, 0.0018 and 0.0023 g cm−3, respectively. It has been found that the correlation coefficient and RMSECV for the prediction of the density and crystallinity change little with the spectral resolution. However, for the prediction of melting point, the higher resolutions (2 and 4 cm−1 resolution) provide slightly better results than the lower resolutions. NIR transmission spectra of thin films of LLDPE, LDPE and HDPE have also been investigated, and calibration models for predicting their density have been developed for the film spectra.


Sign in / Sign up

Export Citation Format

Share Document