Effect of Friedel-Crafts reaction on the thermal stability and flammability of high-density polyethylene/brominated polystyrene/graphene nanoplatelet composites

2014 ◽  
Vol 63 (10) ◽  
pp. 1835-1841 ◽  
Author(s):  
Shiya Ran ◽  
Zhenghong Guo ◽  
Ligang Han ◽  
Zhengping Fang
Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 361 ◽  
Author(s):  
Kartik Behera ◽  
Mithilesh Yadav ◽  
Fang-Chyou Chiu ◽  
Kyong Rhee

In this study, a graphene nanoplatelet (GNP) was used as a reinforcing filler to prepare poly(vinylidene fluoride) (PVDF)/high density polyethylene (HDPE) blend-based nanocomposites through a melt mixing method. Scanning electron microscopy confirmed that the GNP was mainly distributed within the PVDF matrix phase. X-ray diffraction analysis showed that PVDF and HDPE retained their crystal structure in the blend and composites. Thermogravimetric analysis showed that the addition of GNP enhanced the thermal stability of the blend, which was more evident in a nitrogen environment than in an air environment. Differential scanning calorimetry results showed that GNP facilitated the nucleation of PVDF and HDPE in the composites upon crystallization. The activation energy for non-isothermal crystallization of PVDF increased with increasing GNP loading in the composites. The Avrami n values ranged from 1.9–3.8 for isothermal crystallization of PVDF in different samples. The Young’s and flexural moduli of the blend improved by more than 20% at 2 phr GNP loading in the composites. The measured rheological properties confirmed the formation of a pseudo-network structure of GNP-PVDF in the composites. The electrical resistivity of the blend reduced by three orders at a 3-phr GNP loading. The PVDF/HDPE blend and composites showed interesting application prospects for electromechanical devices and capacitors.


2016 ◽  
Vol 857 ◽  
pp. 191-195 ◽  
Author(s):  
A. Nadiatul Husna ◽  
Bee Ying Lim ◽  
H. Salmah ◽  
Chun Hong Voon

Palm kernel shells (PKS) filled recycled high density polyethylene (rHDPE) biocomposites were produced using melt mixing. The biocomposites were prepared on Brabender Plasticorder at temperature of 185 °C and rotor speed of 50 rpm by varying filler loading (0 to 40 phr). In this study, the effect of PKS loading on rheological properties and thermal stability of rHDPE/PKS were investigated. Rheological study of the biocomposites was carried out by means of capillary rheometer under temperature of 190 °C, 200 °C and 210 °C. Thermal properties of biocomposites were studied by using thermo gravimetric analysis (TGA). The rheological results showed that the flowability of the composite increased with increasing temperature. Meanwhile, the result of TGA showed that at higher PKS loading, rHDPE/PKS biocomposites had lower total weight loss. The thermal stability of the biocomposites was reduced due to the addition of filler loading.


2020 ◽  
Vol 842 ◽  
pp. 98-104
Author(s):  
Jia Li ◽  
Hui Wang ◽  
Zhong Han Li ◽  
Ting Ting Zhao ◽  
Tian Tian Wang ◽  
...  

Thermal degradation of the composite constituted by high density polyethylene (HDPE) and microencapsulated red phosphorus (MRP) were studied using thermogravimetric (TG) data obtained at different heating rates. The kinetic models and parameters of the thermal degradation of MRP/HDPE composite were evaluated by FWO, KAS and IKP method. It indicates that the activation energy E of 4 % MRP/HDPE composite is higher than HDPE for three methods. MRP could improve the thermal stability and slow down the thermal degradation of HDPE. With adding MRP, the degradation mechanism of HDPE is changed and the degradation rate decreases.


Sign in / Sign up

Export Citation Format

Share Document