Thermomechanical properties of poly(1‐butene) synthesized by Ziegler–Natta catalyzed polymerization of 1‐butene in the presence of nucleating agents

2020 ◽  
Vol 69 (12) ◽  
pp. 1237-1242
Author(s):  
Xiaopeng Cui ◽  
Chuang Li ◽  
Gaosheng Gu ◽  
Yanfeng Gong ◽  
Binyuan Liu ◽  
...  
2021 ◽  
Author(s):  
Abderrahim Maazouz ◽  
Khalid Lamnawar

Polylactic acid (PLA) can be a good alternative to petroleum-based polymers thanks to its organic origin and its biodegradability. This study introduces some promising routes for enhancing the processability of PLA, which presents several challenges due mainly to the poor shear and elongation properties of this biopolymer. To our knowledge, this is the first paper dedicated to an investigation of foaming and/or blown extrusion of PLA that focuses on structural, rheological and thermomechanical properties. Two main routes were selected: (i) the modification of its structural, rheological and thermomechanical properties and (ii) blending the PLA with another ductile, thermoplastic biopolymer such as poly (butylene adipate-co-terephthalate) (PBAT) or polyamide (PA11). Various formulations of PLA with multifunctionalized epoxy, nucleating agents and plasticizer were prepared and characterized on the basis of their linear viscoelasticity and extensional properties. The balance of chain extension and branching was also investigated using solution viscosimetry, steric exclusion chromatography (SEC) and rheology (shear and elongation rheology). On one hand, a batch foaming process assisted by supercritical CO2 was carried out. The influence of the foaming parameters, the extent of chain modification and the contribution of crystallization to cell morphology were all evaluated. Based on these parameters, structures ranging from micro to macro-cellular-cell were obtained. On the other hand, the stability maps of blown extrusion for neat and modified PLA were established at different die temperatures. We succeeded in greatly enhancing the blown extrusion windows of PLA, achieving high blow-up ratio (BUR) and take-up ratio (TUR) values. We were able to demonstrate that faster kinetics of crystallization can also be reached for chain-extended and branched PLA formulated with adequate amounts of nucleating agents and plasticizers. Through this work, blown films with intriguing thermomechanical and mechanical properties were produced using an optimal formulation for PLA. 


MRS Bulletin ◽  
1997 ◽  
Vol 22 (10) ◽  
pp. 49-54 ◽  
Author(s):  
E. Todd Ryan ◽  
Andrew J. McKerrow ◽  
Jihperng Leu ◽  
Paul S. Ho

Continuing improvement in device density and performance has significantly affected the dimensions and complexity of the wiring structure for on-chip interconnects. These enhancements have led to a reduction in the wiring pitch and an increase in the number of wiring levels to fulfill demands for density and performance improvements. As device dimensions shrink to less than 0.25 μm, the propagation delay, crosstalk noise, and power dissipation due to resistance-capacitance (RC) coupling become significant. Accordingly the interconnect delay now constitutes a major fraction of the total delay limiting the overall chip performance. Equally important is the processing complexity due to an increase in the number of wiring levels. This inevitably drives cost up by lowering the manufacturing yield due to an increase in defects and processing complexity.To address these problems, new materials for use as metal lines and interlayer dielectrics (ILDs) and alternative architectures have surfaced to replace the current Al(Cu)/SiO2 interconnect technology. These alternative architectures will require the introduction of low-dielectric-constant k materials as the interlayer dielectrics and/or low-resistivity conductors such as copper. The electrical and thermomechanical properties of SiO2 are ideal for ILD applications, and a change to material with different properties has important process-integration implications. To facilitate the choice of an alternative ILD, it is necessary to establish general criterion for evaluating thin-film properties of candidate low-k materials, which can be later correlated with process-integration problems.


2020 ◽  
pp. 58-66
Author(s):  
N. T. Kakhramanov ◽  
◽  
I. V. Bayramova ◽  
S. S. Pesetsky ◽  
◽  
...  

2020 ◽  
pp. 096739112097811
Author(s):  
Munjula Siva Kumar ◽  
Santosh Kumar ◽  
Krushna Gouda ◽  
Sumit Bhowmik

The polymer composite material’s thermomechanical properties with fiber as reinforcement material have been widely studied in the last few decades. However, these fiber-based polymer composites exhibit problems such as fiber orientation, delamination, fiber defect along the length and bonding are the matter of serious concern in order to improve the thermomechanical properties and obtain isotropic material behavior. In the present investigation filler-based composite material is developed using natural hemp and high thermal conductive silver nanoparticles (SNP) and combination of dual fillers in neat epoxy polymer to investigate the synergetic influence. Among various organic natural fillers hemp filler depicts good crystallinity characteristics, so selected as a biocompatible filler along with SNP conductive filler. For enhancing their thermal conductivity and mechanical properties, hybridization of hemp filler along with silver nanoparticles are conducted. The composites samples are prepared with three different combinations such as sole SNP, sole hemp and hybrid (SNP and hemp) are prepared to understand their solo and hybrid combination. From results it is examined that, chemical treated hemp filler has to maximized its relative properties and showed, 40% weight % of silver nanoparticles composites have highest thermal conductivity 1.00 W/mK followed with hemp filler 0.55 W/mK and hybrid 0.76 W/mK composites at 7.5% of weight fraction and 47.5% of weight fraction respectively. The highest tensile strength is obtained for SNP composite 32.03 MPa and highest young’s modulus is obtained for hybrid composites. Dynamic mechanical analysis is conducted to find their respective storage modulus and glass transition temperature and that, the recorded maximum for SNP composites with 3.23 GPa and 90°C respectively. Scanning electron microscopy examinations clearly illustrated that formation of thermal conductivity chain is significant with nano and micro fillers incorporation.


Sign in / Sign up

Export Citation Format

Share Document