Materials Issues and Characterization of Low-k Dielectric Materials

MRS Bulletin ◽  
1997 ◽  
Vol 22 (10) ◽  
pp. 49-54 ◽  
Author(s):  
E. Todd Ryan ◽  
Andrew J. McKerrow ◽  
Jihperng Leu ◽  
Paul S. Ho

Continuing improvement in device density and performance has significantly affected the dimensions and complexity of the wiring structure for on-chip interconnects. These enhancements have led to a reduction in the wiring pitch and an increase in the number of wiring levels to fulfill demands for density and performance improvements. As device dimensions shrink to less than 0.25 μm, the propagation delay, crosstalk noise, and power dissipation due to resistance-capacitance (RC) coupling become significant. Accordingly the interconnect delay now constitutes a major fraction of the total delay limiting the overall chip performance. Equally important is the processing complexity due to an increase in the number of wiring levels. This inevitably drives cost up by lowering the manufacturing yield due to an increase in defects and processing complexity.To address these problems, new materials for use as metal lines and interlayer dielectrics (ILDs) and alternative architectures have surfaced to replace the current Al(Cu)/SiO2 interconnect technology. These alternative architectures will require the introduction of low-dielectric-constant k materials as the interlayer dielectrics and/or low-resistivity conductors such as copper. The electrical and thermomechanical properties of SiO2 are ideal for ILD applications, and a change to material with different properties has important process-integration implications. To facilitate the choice of an alternative ILD, it is necessary to establish general criterion for evaluating thin-film properties of candidate low-k materials, which can be later correlated with process-integration problems.

MRS Bulletin ◽  
1997 ◽  
Vol 22 (10) ◽  
pp. 19-27 ◽  
Author(s):  
Wei William Lee ◽  
Paul S. Ho

Continuing improvement of microprocessor performance historically involves a decrease in the device size. This allows greater device speed, an increase in device packing density, and an increase in the number of functions that can reside on a single chip. However higher packing density requires a much larger increase in the number of interconnects. This has led to an increase in the number of wiring levels and a reduction in the wiring pitch (sum of the metal line width and the spacing between the metal lines) to increase the wiring density. The problem with this approach is that—as device dimensions shrink to less than 0.25 μm (transistor gate length)—propagation delay, crosstalk noise, and power dissipation due to resistance-capacitance (RC) coupling become significant due to increased wiring capacitance, especially interline capacitance between the metal lines on the same metal level. The smaller line dimensions increase the resistivity (R) of the metal lines, and the narrower interline spacing increases the capacitance (C) between the lines. Thus although the speed of the device will increase as the feature size decreases, the interconnect delay becomes the major fraction of the total delay and limits improvement in device performance.To address these problems, new materials for use as metal lines and interlayer dielectrics (ILD) as well as alternative architectures have been proposed to replace the current Al(Cu) and SiO2 interconnect technology.


2021 ◽  
Author(s):  
Iurii Cherukhin

In this work, we have investigated polymer-based flexible antennas from commercial and modified polymers, which are competitive to rigid PCB technology. Classical designs of the patch and bow-tie antennas have been realized and showed that the realized gain can get up to 9.16dBi for the patch and 7.9dBi for the bow-tie antennas. The effects of the dielectric loss and conductivity on the antennas’ performance in S-band have been analyzed in order to find limits for further material engineering and the optimum trade-off between microwave and mechanical performance. The bending effects have been investigated, and it has been found that E-plane bend inside can boost the antenna gain from 8.6dBi to 10.1dBi with the frequency shift from 2.5 GHz to 2.4 GHz for the patch and 7.9dBi to 11.3dBi at 3.1 GHz for the bow-tie antennas. The non-classical π-shaped conductors’ edges lead to additional fringing fields, which have an effect on the antenna’s gain and can be explored and exploited for further performance improvements. The new recipes for low-loss, low-Dk dielectric materials, and chemical integration between conducting


1999 ◽  
Vol 565 ◽  
Author(s):  
Michael Morgen ◽  
Jie-Hua Zhao ◽  
Michael Hay ◽  
Taiheui Cho ◽  
Paul S. Ho

AbstractIn recent years there have been widespread efforts to identify low dielectric constant materials that can satisfy a number of diverse performance requirements necessary for successful integration into IC devices. This has led to extensive efforts to develop low k materials and the associated process integration. A particularly difficult challenge for material development has been to find the combination of low dielectric constant and good thermal and mechanical stability. In this paper recent characterization results for low k materials performed at the University of Texas will be reviewed, with an emphasis on the relationship of chemical structure to the aforementioned key material properties. For example, measurements showing the effect of film porosity on dielectric constant and thermal and mechanical properties is presented. This data, as well as that for other material types, demonstrates the tradeoffs between dielectric constant and thermomechanical properties that are often made during the course of material development.


2021 ◽  
Author(s):  
Iurii Cherukhin

In this work, we have investigated polymer-based flexible antennas from commercial and modified polymers, which are competitive to rigid PCB technology. Classical designs of the patch and bow-tie antennas have been realized and showed that the realized gain can get up to 9.16dBi for the patch and 7.9dBi for the bow-tie antennas. The effects of the dielectric loss and conductivity on the antennas’ performance in S-band have been analyzed in order to find limits for further material engineering and the optimum trade-off between microwave and mechanical performance. The bending effects have been investigated, and it has been found that E-plane bend inside can boost the antenna gain from 8.6dBi to 10.1dBi with the frequency shift from 2.5 GHz to 2.4 GHz for the patch and 7.9dBi to 11.3dBi at 3.1 GHz for the bow-tie antennas. The non-classical π-shaped conductors’ edges lead to additional fringing fields, which have an effect on the antenna’s gain and can be explored and exploited for further performance improvements. The new recipes for low-loss, low-Dk dielectric materials, and chemical integration between conducting


Author(s):  
Xiaomo Jiang ◽  
Craig Foster

Gas turbine simple or combined cycle plants are built and operated with higher availability, reliability, and performance in order to provide the customer with sufficient operating revenues and reduced fuel costs meanwhile enhancing customer dispatch competitiveness. A tremendous amount of operational data is usually collected from the everyday operation of a power plant. It has become an increasingly important but challenging issue about how to turn this data into knowledge and further solutions via developing advanced state-of-the-art analytics. This paper presents an integrated system and methodology to pursue this purpose by automating multi-level, multi-paradigm, multi-facet performance monitoring and anomaly detection for heavy duty gas turbines. The system provides an intelligent platform to drive site-specific performance improvements, mitigate outage risk, rationalize operational pattern, and enhance maintenance schedule and service offerings via taking appropriate proactive actions. In addition, the paper also presents the components in the system, including data sensing, hardware, and operational anomaly detection, expertise proactive act of company, site specific degradation assessment, and water wash effectiveness monitoring and analytics. As demonstrated in two examples, this remote performance monitoring aims to improve equipment efficiency by converting data into knowledge and solutions in order to drive value for customers including lowering operating fuel cost and increasing customer power sales and life cycle value.


AIHA Journal ◽  
2003 ◽  
Vol 64 (5) ◽  
pp. 660-667 ◽  
Author(s):  
Katharyn A. Grant ◽  
John G. Garland ◽  
Todd C. Joachim ◽  
Andrew Wallen ◽  
Twyla Vital

Author(s):  
K. Boddenberg ◽  
B. Kock ◽  
M. Dorfman ◽  
L. Russo ◽  
M. Nestler

Abstract Air separation plants use centrifugal compressors where air and electrical energy are the only raw materials used in the production process. So energy costs play a crucial role and the compressors are heavily penalized when guaranteed performance levels are not achieved. In order to better generate performance, abradable coatings, previously used in the gas turbine industry, have been designed into turbocompressors. This paper will show the optimization and performance improvements of a new aluminium silicon-boron nitride material.


Sign in / Sign up

Export Citation Format

Share Document