Site-Specific Systematic Analysis of Lysine Modification Crosstalk

PROTEOMICS ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 1700292 ◽  
Author(s):  
Hao-Dong Xu ◽  
Li-Na Wang ◽  
Ping-Ping Wen ◽  
Shao-Ping Shi ◽  
Jian-Ding Qiu
PROTEOMICS ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 1870071
Author(s):  
Hao-Dong Xu ◽  
Li-Na Wang ◽  
Ping-Ping Wen ◽  
Shao-Ping Shi ◽  
Jian-Ding Qiu

2014 ◽  
Vol 16 (4) ◽  
pp. 361-384 ◽  
Author(s):  
Benjamin Dumont ◽  
Bruno Basso ◽  
Vincent Leemans ◽  
Bernard Bodson ◽  
Jean-Pierre Destain ◽  
...  

Author(s):  
Charles Fernandez ◽  
Shashi Bhushan Kumar ◽  
Wai Lok Woo ◽  
Rosemary Norman ◽  
Arun Kr. Dev

The Dynamic Positioning (DP) System is a complex system with significant levels of integration between many sub-systems to perform diverse control functions. The extent of information managed by each sub-system is enormous. The complex level of integration between sub-systems creates more possible failure scenarios. A systematic analysis of all failure scenarios is tedious and for an operator to handle any such catastrophic situation is breath taking. There are many accidents where a failure in a DP system has resulted in fatalities and environmental pollution. Therefore, reliability assessment of a DP system is critical for safe and efficient operation of marine and offshore vessels. Traditionally, the reliability of a DP system is assessed during the design stage by methodologies such as Failure Mode Effects and Analysis (FMEA), Proving Trials, Hardware In-the Loop (HIL) testing, Site-Specific Risk Analysis, DP capability Analysis and during operation by annual trials to verify functionality. All these methods are time consuming, involving a lot of human effort and notably no analysis of previous accidents are indicated in the reliability assessment. This imposes in-built uncertainty and risk in DP system during operation. In this paper, a new concept of Dynamic Positioning Reliability Index (DP-RI) is introduced and a state-of-the-art advisory decision making tool is proposed. This tool is developed based on information from various sources including Offshore Reliability Data (OREDA), International Marine Contractors Association (IMCA) Accident database, DP vendor equipment failure databases, DP System supplier’s manuals, previous system level FMEA and HIL testing results, Site specific risk analysis documents, Project design specification and Operator’s operational experiences. Thus, DP-RI addresses the pitfalls of existing reliability assessment methods and will be an efficient tool in reducing the number of DP-related accidents.


Author(s):  
F.J. Sjostrand

In the 1940's and 1950's electron microscopy conferences were attended with everybody interested in learning about the latest technical developments for one very obvious reason. There was the electron microscope with its outstanding performance but nobody could make very much use of it because we were lacking proper techniques to prepare biological specimens. The development of the thin sectioning technique with its perfectioning in 1952 changed the situation and systematic analysis of the structure of cells could now be pursued. Since then electron microscopists have in general become satisfied with the level of resolution at which cellular structures can be analyzed when applying this technique. There has been little interest in trying to push the limit of resolution closer to that determined by the resolving power of the electron microscope.


Author(s):  
Richard D. Powell ◽  
James F. Hainfeld ◽  
Carol M. R. Halsey ◽  
David L. Spector ◽  
Shelley Kaurin ◽  
...  

Two new types of covalently linked, site-specific immunoprobes have been prepared using metal cluster labels, and used to stain components of cells. Combined fluorescein and 1.4 nm “Nanogold” labels were prepared by using the fluorescein-conjugated tris (aryl) phosphine ligand and the amino-substituted ligand in the synthesis of the Nanogold cluster. This cluster label was activated by reaction with a 60-fold excess of (sulfo-Succinimidyl-4-N-maleiniido-cyclohexane-l-carboxylate (sulfo-SMCC) at pH 7.5, separated from excess cross-linking reagent by gel filtration, and mixed in ten-fold excess with Goat Fab’ fragments against mouse IgG (obtained by reduction of F(ab’)2 fragments with 50 mM mercaptoethylamine hydrochloride). Labeled Fab’ fragments were isolated by gel filtration HPLC (Superose-12, Pharmacia). A combined Nanogold and Texas Red label was also prepared, using a Nanogold cluster derivatized with both and its protected analog: the cluster was reacted with an eight-fold excess of Texas Red sulfonyl chloride at pH 9.0, separated from excess Texas Red by gel filtration, then deprotected with HC1 in methanol to yield the amino-substituted label.


2020 ◽  
Vol 64 (1) ◽  
pp. 135-153 ◽  
Author(s):  
Lauren Elizabeth Smith ◽  
Adelina Rogowska-Wrzesinska

Abstract Post-translational modifications (PTMs) are integral to the regulation of protein function, characterising their role in this process is vital to understanding how cells work in both healthy and diseased states. Mass spectrometry (MS) facilitates the mass determination and sequencing of peptides, and thereby also the detection of site-specific PTMs. However, numerous challenges in this field continue to persist. The diverse chemical properties, low abundance, labile nature and instability of many PTMs, in combination with the more practical issues of compatibility with MS and bioinformatics challenges, contribute to the arduous nature of their analysis. In this review, we present an overview of the established MS-based approaches for analysing PTMs and the common complications associated with their investigation, including examples of specific challenges focusing on phosphorylation, lysine acetylation and redox modifications.


1987 ◽  
Vol 48 (C9) ◽  
pp. C9-741-C9-744 ◽  
Author(s):  
W. HABENICHT ◽  
L. A. CHEWTER ◽  
M. SANDER ◽  
K. MÜLLER-DETHLEFS ◽  
E. W. SCHLAG

Sign in / Sign up

Export Citation Format

Share Document