X-Ray diffraction technique to assess radiation damage in semicrystalline polymers. I. Isotactic poly(methyl methacrylate)

1979 ◽  
Vol 17 (12) ◽  
pp. 3969-3978 ◽  
Author(s):  
R. P. Kusy ◽  
A. R. Greenberg
2009 ◽  
Vol 79-82 ◽  
pp. 353-356
Author(s):  
Wei Pan ◽  
Yan Chen ◽  
Xiao Wei He

The polyacrylonitrile(PAN)/poly (methyl methacrylate)(PMMA) blend fibers were prepared by wet-spinning technique and carbonized over the temperature range of 400-1000°C in nitrogen atmosphere. After carbonization of the blend fibers, the PMMA component removed and the PAN component left in the form of carbon nanofibers. Morphology of the carbon nanofibers were investigated via scanning electron microscopy (SEM), and the carbonization behavior of the fibers were examined via x-ray diffraction (XRD), Raman microspectrometry. The optimal condition made carbon fibers with great L/D ratio and diameter less than 200 nm. XRD and Raman spectra shows that the PAN/PMMA blend fibers treated at 600°C produced some graphite crystallite.


Author(s):  
Jayashree Bagawade ◽  

A series of novel zinc oxide / Poly (methyl methacrylate) nanocomposite films with different ZnO contents were prepared through inclusion of pre-synthesized zinc oxide nanoparticles. The physical composition and morphology of the as-prepared nanocomposites were studied by XRD and TEM. The TEM analyses revealed that the zinc oxide nanoparticles have a particle size of ~3–5 nm. X-ray diffraction proved the presence of the amorphous PMMA in the nanocomposites. The intermolecular interactions within the polymer nanocomposites were explored by FTIR and XRD. FTIR spectra confirmed the dispersion of the zinc oxide nanoparticles in the Poly (methyl methacrylate) i.e. PMMA matrices. The UV-Vis absorption measurements of the ZnO/PMMA nanocomposites proved their potential optical properties.


1958 ◽  
Vol 2 ◽  
pp. 261-274
Author(s):  
W. V. Cummings ◽  
W. J. Gruber

AbstractMany materials, both fissionable and non-fissionable, become very radioactive when subjected to nuclear radiations. This radioactivity results in a high background level in X-ray diffraction studies and becomes a limiting factor in an analysis of radiation damage. A description is given of special techniques that are used to minimize this background and produce optimum diffraction conditions. The radioactive intensity of irradiated X-ray specimens varies from levels that are only mildly troublesome to levels that are extremely hazardous to personnel. The diffraction methods employed at the various levels are explained. An example of the radioactive energy spectrum of a specimen is given to show the method of selecting the best operating conditions and techniques.


1958 ◽  
Vol 2 ◽  
pp. 107-115
Author(s):  
Vincent G. Scotti ◽  
James I. Mueller ◽  
John J. Little

AbstractWith the advent of nuclear engineering, x-ray diffraction has become an important analytical tool in the study of radiation damage due to neutron and gamma-ray irradiation. The materials under study in this work have rdioactive levels up to 40 R/hr. at 17 centimeters combined β and γ. The activity of the various samples under study may be due to (n, γ) reactions or fission products or both.Data are presented to illustrate the use of sample shielding, detector shielding pulse height discrimination and the combination of all three aids in an effort to attain the most favorable peak to background ratio.


1973 ◽  
Vol 28 (7-8) ◽  
pp. 426-428 ◽  
Author(s):  
Ulrich Müller

CH3HgN3 crystallizes in the space group P21/c with four molecules per unit cell. The structure was solved by common crystallographic methods using X-ray diffraction data that were collected at a temperature of 100°K. The cooling was necessary to limit the radiation damage of the crystals. The molecules possess an essentially linear C-Hg-N group; in the crystals they are associated to layers bearing the methyl groups on their outer side.


2019 ◽  
Author(s):  
Jitendra Bahadur ◽  
S. K. Sharma ◽  
Avik Das ◽  
Debasis Sen ◽  
P. K. Pujari

Sign in / Sign up

Export Citation Format

Share Document