Water sorption and permeation in chitosan films: Relation between gas permeability and relative humidity

2001 ◽  
Vol 39 (24) ◽  
pp. 3114-3127 ◽  
Author(s):  
S. Despond ◽  
E. Espuche ◽  
A. Domard
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ata Ur Rehman ◽  
Muhammad Zahir Shah ◽  
Shehla Rasheed ◽  
Wasim Afzal ◽  
Muhammad Arsalan ◽  
...  

Abstract Salt hydrates (MgSO4 and ZnSO4) impregnated in zeolites, offer a variety of improvements, mostly providing a large surface area for salt hydrates and water molecules. A composite of 5 and 10% of salt contents were prepared as heat storage materials. The study’s finding showed that dehydration enthalpy of MgSO4 (1817 J g−1) and ZnSO4 (1586 J g−1) were 10 and 15% improved than pure salt hydrates by making composites. During the hydration process of composites, the water sorption is 30–37% improved and further the increasing of salt contents in composites enhances more 10% increase in the water resorption. The cyclicability of MgSO4/zeolite and ZnSO4/zeolite were 45 and 51% improved than their corresponding pure salt hydrates. The effect of humidity on the water sorption result reveals that composites of MgSO4/zeolite and ZnSO4/zeolite at 75% relative humidity (RH), the mass of water are 51 and 40% increase than 55% RH.


2015 ◽  
Vol 133 ◽  
pp. 110-116 ◽  
Author(s):  
M.A. Gámiz-González ◽  
A.E. Piskin ◽  
C. Pandis ◽  
C. Chatzimanolis-Moustakas ◽  
A. Kyritsis ◽  
...  

2010 ◽  
Vol 53 (4) ◽  
pp. 945-952 ◽  
Author(s):  
Giannini Pasiznick Apati ◽  
Sandra Aparecida Furlan ◽  
João Borges Laurindo

Dehydration and rehydration processes of Pleurotus ostreatus fruiting bodies were investigated in this work. Mushroom samples were dehydrated at 40, 50 and 60 ºC, using drying air with relative humidity of 75 %. The rehydration was investigated at different temperatures of immersion water (25, 55 and 85 ºC) and different immersion times (30, 75 and 120 minutes). The best rehydration occurred for the samples dried at 40 ºC. The rehydration could be done in water at room temperature, during 30 minutes. Water sorption isotherms of samples were determined at 30, 40 and 50 ºC. Both GAB and BET models satisfactorily represented the experimental data of moisture sorption of dried mushrooms.


2011 ◽  
Vol 45 (1) ◽  
pp. 53-60 ◽  
Author(s):  
Yong Yu ◽  
Xuan Wang ◽  
Dominik Oberthür ◽  
Arne Meyer ◽  
Markus Perbandt ◽  
...  

A new crystallization system is described, which makes it possible to use an evaporation-based microfluidic crystallization technique for protein crystallization. The gas and water permeability of the used polydimethylsiloxane (PDMS) material enables evaporation of the protein solution in the microfluidic device. The rates of evaporation are controlled by the relative humidity conditions, which are adjusted in a precise and stable way by using saturated solutions of different reagents. The protein crystals could nucleate and grow under different relative humidity conditions. Using this method, crystal growth could be improved so that approximately 1 mm-sized lysozyme crystals were obtained more successfully than using standard methods. The largest lysozyme crystal obtained reached 1.57 mm in size. The disadvantage of the good gas permeability in PDMS microfluidic devices becomes an advantage for protein crystallization. The radius distributions of aggregrates in the solutions inside the described microfluidic devices were derived fromin situdynamic light scattering measurements. The experiments showed that the environment inside of the microfluidic device is more stable than that of conventional crystallization techniques. However, the morphological results showed that the protein crystals grown in the microfluidic device could lose their morphological stability. Air bubbles in microfluidic devices play an important role in the evaporation progress. A model was constructed to analyze the relationship of the rates of evaporation and the growth of air bubbles to the relative humidity.


2012 ◽  
Vol 733 ◽  
pp. 61-64 ◽  
Author(s):  
Hamdy F.M. Mohamed ◽  
Yoshinori Kobayashi ◽  
Seiichi Kuroda ◽  
Akihiro Ohira

Variations of ortho-positronium (o-Ps) lifetime and gas permeability of the Aquivion® E8705 membrane were studied as functions of temperature under vacuum and relative humidity at room temperature. When the temperature was varied between 0 and 100 °C in vacuum, the hole volume of Aquivion® E8705, deduced from the ortho-positronium lifetime, gradually increased. However, when the relative humidity was changed at room temperature, the hole volume was essentially unchanged. Good linear correlations between the logarithm of permeabilities of O2 and H2 and reciprocal hole volume at different temperatures indicates the importance role of free volume in gas permeation in dry Aquivion® E8705. However, for hydrated Aquivion® E8705 the permeability less depends on hole volume.


2012 ◽  
Vol 37 (7) ◽  
pp. 6308-6316 ◽  
Author(s):  
J. Catalano ◽  
T. Myezwa ◽  
M.G. De Angelis ◽  
M. Giacinti Baschetti ◽  
G.C. Sarti

Holzforschung ◽  
2010 ◽  
Vol 64 (3) ◽  
Author(s):  
Lisbeth G. Thygesen ◽  
Emil Tang Engelund ◽  
Preben Hoffmeyer

Abstract Desorption isotherms at 20°C for untreated, acetylated, and furfurylated Norway spruce [Picea abies (L.) Karst.] sapwood were established in the 91.9–99.9% relative humidity (RH) range. Three methods were employed to secure various constant RH levels: saturated salt solutions, climate chambers, and the pressure plate technique. The curve form for the untreated samples did not show an upward bend, except perhaps above 99.5% RH, indicating that – contrary to what has hitherto been assumed – capillary condensation does not play a significant role for water sorption in wood below fiber saturation. Three additional results corroborate this conclusion: (1) calculation of the theoretical contribution of capillary condensation to the moisture content (MC) in wood based on idealized microstructural geometries by means of the Kelvin and Laplace equations resulted in very small contributions to the equilibrium moisture content (EMC), i.e., below 0.35% moisture at 99.9% RH. (2) The ratio between the EMC of acetylated and untreated samples did not show an increasing trend for increasing RH, as would have been the case if capillary condensation had taken place in both untreated and acetylated wood. (3) Low field time domain nuclear magnetic resonance results showed that only the relaxation curves from the furfurylated samples were affected systematically by freezing, indicating that neither untreated nor acetylated wood contained significant amounts of capillary condensed water.


Author(s):  
JL Banyasz

AbstractAn equation to describe the water sorption isotherm of tobacco is developed based on a model of the tobacco-water system as a mixture or solid solution comprised of water and water binding sites of many different kinds. It is assumed that free water has an activity coefficient of one. The result is an equation that predicts moisture content as a function of relative humidity given the numbers of each of the different kinds of sites and the associated water binding equilibrium constants. It is shown that this multi-site equation reduces to a one site equation if the different kinds of water binding sites are symmetrically distributed with regard to their affinity for water. The result is a two parameter, average site equation that fits water sorption data for tobacco over the range of 10-80% relative humidity. The average site equation is identical to the equation derived by BRUNAUER, EMMETT and TELLER for binding to surface sites (1). The two models start from very different points of view but come to the same conclusion because they are ultimately based on thermodynamics which is indifferent as to the physical nature of the sites. Inferences as to the microscopic nature of water binding sites cannot be made from thermodynamic isotherm equations. In order to describe the effects of water on the physical properties of tobacco the solution analogy is extended further. If tobacco is a mixture or solution of unhydrated sites, hydrated sites and free water, then the value of a physical property should be a function of the concentrations of those species and the associated partial molar values of the property. As the total moisture content changes the distribution of species will change and, in turn, change the properties. Applications of this rationale are presented for heat capacity, thermal diffusivity and the kinetics of the Browning reaction. The results demonstrate that the parameters derived from water sorption data play a more general role in the thermodynamics of the tobacco-water system.


Sign in / Sign up

Export Citation Format

Share Document