scholarly journals Time asymmetric quantum theory – I. Modifying an axiom of quantum physics

2003 ◽  
Vol 51 (6) ◽  
pp. 551-568 ◽  
Author(s):  
A.R. Bohm ◽  
M. Loewe ◽  
B. Van de Ven
Author(s):  
T. N. Palmer

A new law of physics is proposed, defined on the cosmological scale but with significant implications for the microscale. Motivated by nonlinear dynamical systems theory and black-hole thermodynamics, the Invariant Set Postulate proposes that cosmological states of physical reality belong to a non-computable fractal state-space geometry I , invariant under the action of some subordinate deterministic causal dynamics D I . An exploratory analysis is made of a possible causal realistic framework for quantum physics based on key properties of I . For example, sparseness is used to relate generic counterfactual states to points p ∉ I of unreality, thus providing a geometric basis for the essential contextuality of quantum physics and the role of the abstract Hilbert Space in quantum theory. Also, self-similarity, described in a symbolic setting, provides a possible realistic perspective on the essential role of complex numbers and quaternions in quantum theory. A new interpretation is given to the standard ‘mysteries’ of quantum theory: superposition, measurement, non-locality, emergence of classicality and so on. It is proposed that heterogeneities in the fractal geometry of I are manifestations of the phenomenon of gravity. Since quantum theory is inherently blind to the existence of such state-space geometries, the analysis here suggests that attempts to formulate unified theories of physics within a conventional quantum-theoretic framework are misguided, and that a successful quantum theory of gravity should unify the causal non-Euclidean geometry of space–time with the atemporal fractal geometry of state space. The task is not to make sense of the quantum axioms by heaping more structure, more definitions, more science fiction imagery on top of them, but to throw them away wholesale and start afresh. We should be relentless in asking ourselves: From what deep physical principles might we derive this exquisite structure? These principles should be crisp, they should be compelling. They should stir the soul. Chris Fuchs ( Gilder 2008 , p. 335)


2015 ◽  
Vol 1 (2) ◽  
Author(s):  
Marc Henry

The claim that chemistry has been explained in terms of quantum theory is received wisdom. Yet quantum physics is unable to explain the strong association of water molecules in liquid or ice. Marc Henry suggests the hydrogen bond is an emergent property of matter resulting from a non-linear coupling between quantified energy levels of water molecules and a quantified internal electromagnetic field.


Entropy ◽  
2019 ◽  
Vol 21 (8) ◽  
pp. 806 ◽  
Author(s):  
Andrei Khrennikov

This paper is aimed to dissociate nonlocality from quantum theory. We demonstrate that the tests on violation of the Bell type inequalities are simply statistical tests of local incompatibility of observables. In fact, these are tests on violation of the Bohr complementarity principle. Thus, the attempts to couple experimental violations of the Bell type inequalities with “quantum nonlocality” is really misleading. These violations are explained in the quantum theory as exhibitions of incompatibility of observables for a single quantum system, e.g., the spin projections for a single electron or the polarization projections for a single photon. Of course, one can go beyond quantum theory with the hidden variables models (as was suggested by Bell) and then discuss their possible nonlocal features. However, conventional quantum theory is local.


Author(s):  
G. A. D. Briggs ◽  
J. N. Butterfield ◽  
A. Zeilinger

The twentieth century saw two fundamental revolutions in physics—relativity and quantum. Daily use of these theories can numb the sense of wonder at their immense empirical success. Does their instrumental effectiveness stand on the rock of secure concepts or the sand of unresolved fundamentals? Does measuring a quantum system probe, or even create, reality or merely change belief? Must relativity and quantum theory just coexist or might we find a new theory which unifies the two? To bring such questions into sharper focus, we convened a conference on Quantum Physics and the Nature of Reality. Some issues remain as controversial as ever, but some are being nudged by theory's secret weapon of experiment.


2014 ◽  
Vol 10 (S305) ◽  
pp. 136-145
Author(s):  
Jan Olof Stenflo

AbstractThe extensive literature on the physics of polarized scattering may give the impression that we have a solid theoretical foundation for the interpretation of spectro-polarimetric data. This theoretical framework has however not been sufficiently tested by experiments under controlled conditions. While the solar atmosphere may be viewed as a physics laboratory, the observed solar polarization depends on too many environmental factors that are beyond our control. The existence of a symmetric polarization peak at the center of the solar Na D1 line has remained an enigma for two decades, in spite of persistent efforts to explain it with available quantum theory. A decade ago a laboratory experiment was set up to determine whether this was a problem for solar physics or quantum physics. The experiment revealed a rich polarization structure of D1 scattering, although available quantum theory predicted null results. It has now finally been possible to formulate a well-defined and self-consistent extension of the theory of quantum scattering that can reproduce in great quantitative detail the main polarization structures that were found in the laboratory experiment. Here we give a brief overview of the new physical ingredients that were missing before. The extended theory reveals that multi-level atomic systems have a far richer coherence structure than previously believed.


Photoniques ◽  
2019 ◽  
pp. 46-53
Author(s):  
Michèle Leduc ◽  
Sébastien Tanzilli

First the physics, then the technology. The two main revolutions that took place in physics in the 20th century were quantum physics and relativity. Quantum theory has never been disproved, and although scientists continue to wrangle over what its concepts actually mean and how they should be interpreted, it has been successfully applied in many areas, and new applications are constantly emerging.


2021 ◽  
Author(s):  
Alexey Kryukov

Abstract Quantum mechanics is the foundation of modern physics that is thought to be applicable to all physical phenomena, at least in principle. However, when applied to macroscopic bodies, the theory seems to be inconsistent. Wigner's friend and related thought experiments demonstrate that accounts by different observers described by the rules of quantum mechanics may be contradictory. Although still highly debated, such experiments seem to demonstrate an incompatibility of quantum mechanics with the usual rules of logic. Alternatively, one of the hidden assumptions in the thought experiments must be wrong. For instance, the argument is invalidated if macroscopic observers cannot be considered as physical systems described by the rules of quantum theory. Here we prove that there is a way to apply the rules of quantum mechanics to macroscopic observers while avoiding contradictory accounts of measurement by the observers. The key to this is the random noise that is ever present in nature and that represents the uncontrollable part of interaction between measured system and the surroundings in classical and quantum physics. By exploring the effect of the noise on microscopic and macroscopic bodies, we demonstrate that accounts of Wigner, the friend and other agents all become consistent. Our result suggests that the existing attempts to modify the Schrodinger equation to account for measurement results may be misguided. More broadly, the proposed mechanism for modeling measurements underlies the phenomenon of decoherence and is shown to be sufficient to explain the transition to Newtonian physics in quantum theory.


Author(s):  
Michael Esfeld

This chapter outlines a metaphysics of science in the sense of a naturalized metaphysics. It considers in the first place the interplay of physics and metaphysics in Newtonian mechanics, then goes into the issues for the metaphysics of time that relativity physics raises, shows that what one considers as the referent of quantum theory depends on metaphysical considerations, and finally explains how the stance that one takes with respect to objective modality and laws of nature shapes the options that are available for an ontology of quantum physics. In that way, this chapter seeks to make a case for a natural philosophy that treats physics and metaphysics as inseparable in the enquiry into the constitution of the world, there being neither a neo-positivist way of deducing metaphysics from the formalisms of physical theories, nor a neo-rationalist realm of investigation for metaphysics that is independent of physics.


Sign in / Sign up

Export Citation Format

Share Document