Semi‐field evaluation of the predation of Macrocheles embersoni and Macrocheles muscaedomesticae (Acari: Mesostigmata: Macrochelidae) on the house fly and the stable fly (Diptera: Muscidae)

2021 ◽  
Author(s):  
Letícia Henrique Azevedo ◽  
Vinícius Borges ◽  
Walter Mesquita Filho ◽  
Raphael de Campos Castilho ◽  
Gilberto José Moraes
2003 ◽  
Vol 135 (4) ◽  
pp. 599-608 ◽  
Author(s):  
K.D. Floate

AbstractA field study was performed in southern Alberta, Canada, to assess the native wasp, Trichomalopsis sarcophagae (Gahan), as a potential biocontrol agent for house fly, Musca domestica L., and stable fly, Stomoxys calcitrans (L.). The wasp was readily reared in large numbers, which allowed for the cumulative release of an estimated 4.63 million wasps into three commercial feedlots during the 2-year study. Each of several releases predictably and repeatedly enhanced parasitism of sentinel house fly pupae, whereas parasitism remained low in three paired control feedlots where wasps were not released. Releases every 2nd week had a disproportionately greater effect than releases every 2nd month. In 1998, 1.2 million wasps were released into treatment feedlots resulting in the recovery of 3 952 T. sarcophagae from 31 500 sentinel pupae (0.13 wasps/pupa). In 1999, 3.43 million wasps were released into treatment feedlots, with the recovery of 37 763 wasps from 47 720 sentinel pupae (0.79 wasps/pupa). Hence, a 2.8-fold increase in the number of wasps released in 1999 resulted in a 6.1-fold increase in the recovery of wasps. This result supports industry recommendations of regular, repeated releases of wasps every 2nd or 4th week versus one or infrequent releases throughout the summer. There was no evidence that releases augmented overwintering populations of the wasp in subsequent years. These results provide proof-of-concept for the mass-rearing and release of T. sarcophagae as an inundative biocontrol agent for the control of pest flies in cattle confinements. Further studies will be required to assess the effect of T. sarcophagae releases on natural populations of pest flies.


1999 ◽  
Vol 131 (6) ◽  
pp. 743-756 ◽  
Author(s):  
Tanja McKay ◽  
Terry D. Galloway

AbstractIn 1995, Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae), a commercially available pupal parasitoid of the house fly, Musca domestica L., and stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae), was purchased to examine the status of wasps being sold to Manitoba producers. Percentage of pupae parasitized, numbers of parasitoids per pupa, total parasitoids, and parasitoid sex ratio were determined for each shipment of parasitoids received. To determine the extent to which these wasps could successfully parasitize house flies and stable flies, parasitoids were released weekly in four Manitoba dairy barns and levels of parasitism estimated. In 10 622 freeze-killed sentinel house fly pupae, 2.2% were parasitized throughout the season by N. vitripennis, and 5.8% were parasitized by eight other species of parasitoids. Of 11 897 naturally occurring house fly and stable fly pupae, 0.6% were parasitized by N. vitripennis, and 3.4% by eight other species of parasitoids. In four barns where there were no releases of N. vitripennis, 1.1% of 11 779 sentinel pupae were parasitized by four species of parasitoids and 3.8% of 8384 naturally occurring house fly and stable fly pupae were parasitized by nine species. The release of an estimated 3 648 093 N. vitripennis did not result in substantial parasitism in either sentinel pupae or naturally occurring pupae. In 1996, live sentinel house fly pupae (n = 50 842) and house fly and stable fly pupae occurring naturally (n = 4691) were collected in two of the nonrelease barns from the 1995 study to examine the activity of endemic parasitoids. Of the sentinel and naturally occurring pupae sampled, 4.0% and 9.4% were parasitized, respectively. Phygadeuon fumator Gravenhörst (Hymenoptera: Ichneumonidae) was the most abundant parasitoid, accounting for 97.4% and 79.9% of parasitoids collected from sentinel pupae and naturally occurring pupae, respectively. Other parasitoids included Urolepis rufipes (Ashmead), Muscidifurax raptor Girault and Sanders, Muscidifurax zaraptor Kogan and Legner, Spalangia subpunctata Först, Spalangia cameroni Perkins, Spalangia nigra Latreille, and a species of Trichomalopsis Crawford (Hymenoptera: Pteromalidae).


2004 ◽  
Vol 136 (3) ◽  
pp. 407-417 ◽  
Author(s):  
G.A.P. Gibson ◽  
K.D. Floate

AbstractHymenopterous parasitoids of filth flies (Diptera: Muscidae) were surveyed during 2 years on dairy farms in Ontario and Quebec near Ottawa, Ontario, using freeze-killed sentinel house fly (Musca domestica L.) pupae and naturally occurring fly pupae collected on site. Musca domestica and Stomoxys calcitrans (L.) (stable fly) represented 98.3% of the natural fly hosts from which parasitoids emerged. Muscidifurax raptor Girault et Saunders, Nasonia vitripennis Walker, Pachycrepoideus vindemiae (Rondani), Spalangia cameroni Perkins, S. nigra Latreille, Trichomalopsis viridescens (Walsh), and Urolepis rufipes (Ashmead) (Pteromalidae) were recovered from both sentinel and natural fly pupae. Another eight species, S. drosophilae Ashmead, S. endius Walker, S. haematobiae Ashmead, S. nigroaenea Curtis, S. subpunctata Förster, Trichomalopsis dubia (Ashmead) (Pteromalidae), Aphaereta pallipes (Say) (Braconidae), and Phygadeuon ?fumator Gravenhörst (Ichneumonidae), were recovered only from natural pupae. Over the 2 years, M. raptor comprised 90.7% of emerged parasitoids from sentinel pupae but only 17.0% of emerged parasitoids from natural pupae. From natural pupae, S. cameroni, S. nigra, and S. nigroaenea collectively comprised 60.3% of emerged parasitoids; P. ?fumator comprised 13.5% and the remaining nine species 9.2%. The recoveries of S. endius and S. nigroaenea represent new distribution records for Canada, and several new host records are identified based on structure of the host fly puparium. The parasitoid fauna is compared with that known for western Canada, and recommendations are made for both regions concerning potential natural enemy enhancement for filth fly control.


2019 ◽  
Author(s):  
Richard P. Meisel ◽  
Pia U. Olafson ◽  
Kiran Adhikari ◽  
Felix D. Guerrero ◽  
Kranti Konganti ◽  
...  

AbstractSex chromosomes and sex determining genes can evolve fast, with the sex-linked chromosomes often differing between closely related species. A substantial body of population genetics theory has been developed and tested to explain the rapid evolution of sex chromosomes and sex determination. However, we do not know why the sex-linked chromosomes differ between some species pairs yet are relatively conserved in other taxa. Addressing this question will require comparing closely related taxa with conserved and divergent sex chromosomes and sex determination systems to identify biological features that could explain these rate differences. Cytological karyotypes suggest that muscid flies (e.g., house fly) and blow flies are such a taxonomic pair. The sex chromosomes appear to differ across muscid species, whereas they are highly conserved across blow flies. Despite the cytological evidence, we do not know the extent to which muscid sex chromosomes are independently derived along different evolutionary lineages. To address that question, we used genomic data to identify young sex chromosomes in two closely related muscid species, horn fly (Haematobia irritans) and stable fly (Stomoxys calcitrans). We provide evidence that the nascent sex chromosomes of horn fly and stable fly were derived independently from each other and from the young sex chromosomes of the closely related house fly (Musca domestica). We present three different scenarios that could have given rise to the sex chromosomes of horn fly and stable fly, and we describe how the scenarios could be distinguished. Distinguishing between these scenarios in future work could help to identify features of muscid genomes that promote sex chromosome divergence.


2020 ◽  
Vol 113 (3) ◽  
pp. 1315-1322 ◽  
Author(s):  
David Francis Cook ◽  
Robert A Deyl ◽  
Jeremy B Lindsey ◽  
Mario F D’Antuono ◽  
Donald V Telfer ◽  
...  

Abstract Stable fly (Stomoxys calcitrans L.) remain a significant pest affecting livestock and rural communities on the Swan Coastal Plain around Perth, Western Australia. Vegetable crop residues remaining after harvest enable stable fly development. Left untreated they can produce from several hundred to >1,000 stable fly/m2 of post-harvest residues. We studied the effect of burial and compaction of sandy soils on adult emergence of stable fly and house fly (Musca domestica L.) (Diptera: Muscidae). Adults of both fly species can move up through 50 cm of loose, dry sand, however at depths greater than 60 cm, emergence rapidly declines with <5% of adults surviving under 100 cm of soil. Burial of stable fly larvae and pupae under 15 cm of soil followed by compaction using a static weight dramatically reduced adult emergence. Moist soil compacted at ≥3 t/m2 completely prevented stable fly emergence whereas house fly emergence was not affected. One t/m2 of compaction resulted in <5% emergence of stable fly buried as pupae. Soil that was easily compactible (i.e., high silt, fine sand and clay content) reduced stable fly emergence more than soil with more coarse sand and low clay content. This study demonstrates the potential for a novel and chemical-free option for controlling stable fly development from vegetable crop post-harvest residue. Field trials are needed to confirm that burial and compaction of vegetable post-harvest residues using agricultural machinery can dramatically reduce the subsequent emergence of adult stable fly on a large scale.


1993 ◽  
Vol 28 (1) ◽  
pp. 113-119 ◽  
Author(s):  
B. M. Pawson ◽  
J. J. Petersen ◽  
R. E. Gold

Utilization of freeze-killed house fly, Musca domestica L., and stable fly, Stomoxys calcitrans L., pupae for development by the pteromalid parasitoids, Muscidifurax zaraptor Kogan and Legner, Pachycrepoideus vindemiae (Rondani) and Spalangia nigroaenea Curtis was investigated. All three species of parasitoids used both fly species as hosts. Parasitoid emergence from house fly and stable fly puparia was not significantly different for M. zaraptor and P. vindemiae. However, emergence of S. nigroaenea was significantly higher from house fly puparia than from stable fly puparia. When given a choice, all three pteromalid species preferred ovipositing on house fly pupae, as indicated by parasitoid emergence. Parasitoid emergence from house fly puparia comprised ca. 75, 58 and 90% of the total combined emergence from house fly and stable fly puparia for M. zaraptor, P. vindemiae and S. nigroaenea, respectively. For M. zaraptor, the proportion of female progeny from house fly puparia (ca. 60%) was significantly higher than that from stable fly puparia (ca. 47%). The proportion of females from house fly and stable fly puparia for P. vindemiae and S. nigroaenea was not significantly different.


Sign in / Sign up

Export Citation Format

Share Document