Cell death and changes in primary metabolism: The onset of defence in Eucalyptus in the war against Leptocybe invasa

2022 ◽  
Author(s):  
Ismael Oliveira Pinto ◽  
Maíra Ignacio Sarmento ◽  
Auxiliadora Oliveira Martins ◽  
João Pedro Laurindo Rocha ◽  
Glória Pinto ◽  
...  
2021 ◽  
Vol 7 (8) ◽  
pp. 677
Author(s):  
Adriana Otero-Blanca ◽  
Yordanis Pérez-Llano ◽  
Guillermo Reboledo-Blanco ◽  
Verónica Lira-Ruan ◽  
Daniel Padilla-Chacon ◽  
...  

Anthracnose caused by the hemibiotroph fungus Colletotrichum gloeosporioides is a devastating plant disease with an extensive impact on plant productivity. The process of colonization and disease progression of C. gloeosporioides has been studied in a number of angiosperm crops. To better understand the evolution of the plant response to pathogens, the study of this complex interaction has been extended to bryophytes. The model moss Physcomitrium patens Hedw. B&S (former Physcomitrella patens) is sensitive to known bacterial and fungal phytopathogens, including C. gloeosporioides, which cause infection and cell death. P. patens responses to these microorganisms resemble that of the angiosperms. However, the molecular events during the interaction of P. patens and C. gloeosporioides have not been explored. In this work, we present a comprehensive approach using microscopy, phenomics and RNA-seq analysis to explore the defense response of P. patens to C. gloeosporioides. Microscopy analysis showed that appressoria are already formed at 24 h after inoculation (hai) and tissue colonization and cell death occur at 24 hai and is massive at 48 hai. Consequently, the phenomics analysis showed progressing browning of moss tissues and impaired photosynthesis from 24 to 48 hai. The transcriptomic analysis revealed that more than 1200 P. patens genes were differentially expressed in response to Colletotrichum infection. The analysis of differentially expressed gene function showed that the C. gloeosporioides infection led to a transcription reprogramming in P. patens that upregulated the genes related to pathogen recognition, secondary metabolism, cell wall reinforcement and regulation of gene expression. In accordance with the observed phenomics results, some photosynthesis and chloroplast-related genes were repressed, indicating that, under attack, P. patens changes its transcription from primary metabolism to defend itself from the pathogen.


Author(s):  
Anne F. Bushnell ◽  
Sarah Webster ◽  
Lynn S. Perlmutter

Apoptosis, or programmed cell death, is an important mechanism in development and in diverse disease states. The morphological characteristics of apoptosis were first identified using the electron microscope. Since then, DNA laddering on agarose gels was found to correlate well with apoptotic cell death in cultured cells of dissimilar origins. Recently numerous DNA nick end labeling methods have been developed in an attempt to visualize, at the light microscopic level, the apoptotic cells responsible for DNA laddering.The present studies were designed to compare various tissue processing techniques and staining methods to assess the occurrence of apoptosis in post mortem tissue from Alzheimer's diseased (AD) and control human brains by DNA nick end labeling methods. Three tissue preparation methods and two commercial DNA nick end labeling kits were evaluated: the Apoptag kit from Oncor and the Biotin-21 dUTP 3' end labeling kit from Clontech. The detection methods of the two kits differed in that the Oncor kit used digoxigenin dUTP and anti-digoxigenin-peroxidase and the Clontech used biotinylated dUTP and avidinperoxidase. Both used 3-3' diaminobenzidine (DAB) for final color development.


Author(s):  
S. Trachtenberg ◽  
P.M. Steinert ◽  
B.L. Trus ◽  
A.C. Steven

During terminal differentiation of vertebrate epidermis, certain specific keratin intermediate filament (KIF) proteins are produced. Keratinization of the epidermis involves cell death and disruption of the cytoplasm, leaving a network of KIF embedded in an amorphous matrix which forms the outer horny layer known as the stratum corneum. Eventually these cells are shed (desquamation). Normally, the processes of differentiation, keratinization, and desquamation are regulated in an orderly manner. In psoriasis, a chronic skin disease, a hyperkeratotic stratum corneum is produced, resulting in abnormal desquamation of unusually large scales. In this disease, the normal KIF proteins are diminished in amount or absent, and other proteins more typical of proliferative epidermal cells are present. There is also evidence of proteolytic degradation of the KIF.


Author(s):  
Eric Hallberg ◽  
Lina Hansén

The antennal rudiments in lepidopterous insects are present as disks during the larval stage. The tubular double-walled antennal disk is present beneath the larval antenna, and its inner layer gives rise to the adult antenna during the pupal stage. The sensilla develop from a cluster of cells that are derived from one stem cell, which gives rise to both sensory and enveloping cells. During the morphogenesis of the sensillum these cells undergo major transformations, including cell death. In the moth Agrotis segetum the pupal stage lasts about 14 days (temperature, 25°C). The antennae, clearly seen from the exterior, were dissected and fixed according to standard procedures (3 % glutaraldehyde in 0.15 M cacaodylate buffer, followed by 1 % osmiumtetroxide in the same buffer). Pupae from day 1 to day 8, of both sexes were studied.


Author(s):  
M.A. Cuadros ◽  
M.J. Martinez-Guerrero ◽  
A. Rios

In the chick embryo retina (days 3-4 of incubation), coinciding with an increase in cell death, specialized phagocytes characterized by intense acid phosphatase activity have been described. In these preparations, all free cells in the vitreal humor (vitreal cells) were strongly labeled. Conventional TEM and SEM techniques were used to characterize them and attempt to determine their relationship with retinal phagocytes.Two types of vitreal cells were distinguished. The first are located at some distance from the basement membrane of the neuroepithelium, and are rounded, with numerous vacuoles and thin cytoplasmic prolongations. Images of exo- and or endocytosis were frequent; the cells showed a well-developed Golgi apparatus (Fig. 1) In SEM images, the cells was covered with short cellular processes (Fig. 3). Cells lying parallel to or alongside the basement membrane are elongated. The plasma membrane is frequently in intimate contact with the basement membrane. These cells have generally a large cytoplasmic expansion (Fig. 5).


2020 ◽  
Vol 48 (2) ◽  
pp. 613-620
Author(s):  
Clara Ortegón Salas ◽  
Katharina Schneider ◽  
Christopher Horst Lillig ◽  
Manuela Gellert

Processing of and responding to various signals is an essential cellular function that influences survival, homeostasis, development, and cell death. Extra- or intracellular signals are perceived via specific receptors and transduced in a particular signalling pathway that results in a precise response. Reversible post-translational redox modifications of cysteinyl and methionyl residues have been characterised in countless signal transduction pathways. Due to the low reactivity of most sulfur-containing amino acid side chains with hydrogen peroxide, for instance, and also to ensure specificity, redox signalling requires catalysis, just like phosphorylation signalling requires kinases and phosphatases. While reducing enzymes of both cysteinyl- and methionyl-derivates have been characterised in great detail before, the discovery and characterisation of MICAL proteins evinced the first examples of specific oxidases in signal transduction. This article provides an overview of the functions of MICAL proteins in the redox regulation of cellular functions.


Sign in / Sign up

Export Citation Format

Share Document