Specific Heat and Thermal Expansion Coefficient of Al

1985 ◽  
Vol 130 (1) ◽  
pp. K11-K14 ◽  
Author(s):  
T. Soma ◽  
S. Nehashi ◽  
H.-Matsuo Kagaya
1998 ◽  
Vol 12 (02) ◽  
pp. 191-205 ◽  
Author(s):  
Vu Van Hung ◽  
Nguyen Thanh Hai

By the moment method established previously on the basis of the statistical mechanics, the thermodynamic properties of a strongly anharmonic face-centered and body-centered cubic crystal with point defect are considered. The thermal expansion coefficient, the specific heat Cv and Cp, the isothermal and adiabatic compressibility, etc. are calculated. Our calculated results of the thermal expansion coefficient, the specific heat Cv and Cp… of W, Nb, Au and Ag metals at various temperatures agrees well with the measured values. The anharmonic effects in extended X-ray absorption fine structure (EXAFS) in the single-shell model are considered. We have obtained a new formula for anharmonic contribution to the mean square relative displacement. The anharmonicity is proportional to the temperature and enters the phase change of EXAFS. Our calculated results of Debye–Waller factor and phase change in EXAFS of Cu at various temperatures agrees well with the measured values.


2016 ◽  
Vol 94 (19) ◽  
Author(s):  
I. S. Burmistrov ◽  
I. V. Gornyi ◽  
V. Yu. Kachorovskii ◽  
M. I. Katsnelson ◽  
A. D. Mirlin

Author(s):  
Fabio Peluso

We continue in this paper to illustrate the implications of the Dual Model of Liquids (DML) by deriving the expression for the isochoric specific heat as function of the collective degrees of freedom available at a given temperature and analyzing its dependence on temperature. Two main tasks will be accomplished. First, we show that the expression obtained for the isochoric specific heat in the DML is in line with the experimental results. Second, the expression will be compared with the analogous one obtained in another theoretical dual model of the liquid state, the Phonon Theory of Liquid Thermodynamics. This comparison will allow to get interesting insights about the number of collective degrees of freedom available in a liquid and on the value of the isobaric thermal expansion coefficient, two quantities that are related to each other in this framework.


2020 ◽  
Vol 57 (3) ◽  
pp. 61-69
Author(s):  
Georgel Mihu ◽  
Vasile Bria ◽  
Adrian Circiumaru ◽  
Iulian Gabriel Birsan ◽  
Marina Bunea

Thermal behavior of hybrid epoxy composites reinforced with different types of plain weave fabrics and ply orientation at various angles was investigated in this research. It was analyzed their thermal linear expansion coefficient and specific heat measured with Thermomechanical Analyzer (TMA) and Differential Scanning Calorimeter (DSC) respectively. Also, in this paper was studied the influence of carbon black - aramid powder and carbon black - barium ferrite mixtures added into epoxy matrix between certain plies of the hybrid composites. The experimental results showed that the addition of filler mixtures led to a significant decreasing of thermal expansion coefficient and specific heat of the hybrid epoxy composite with carbon outer plies. It was recorded a good structural stability in case of hybrid carbon-glass composite in the temperature range of 40-60�C.


2011 ◽  
Vol 484 ◽  
pp. 152-157 ◽  
Author(s):  
Grzegorz Moskal ◽  
Aleksander Iwaniak ◽  
Aleksandra Rozmysłowska-Grund

The paper presents test results concerning characteristics of the selected thermal properties of ceramic powders based on rare earth zirconates with a pyrochlore structure of RE2Zr2O7 type, intended for thermal spraying of TBCs. Gadolinium, lanthanum, samarium and neodymium based powders were tested. The scope of the tests encompassed thermal diffusivity analysis of the powders in a compressed pellets form within temperature range 25-1500°C, and also tests of specific heat and thermal expansion coefficient within similar temperature range. Standard powder of 8YSZ type on the basis of zirconium oxide modified with yttrium oxide was used as a reference material. Specific heat measurements of the powders showed that the highest values within the entire test temperature range were obtained for the standard YSZ type powder. In the case of new type of powders, the results obtained are very similar and only slightly lower in comparison with YSZ powder. The lowest values were obtained for the samarium based powder (temperature range corresponding to operating temperature). Character of the curves obtained do not show course of strong reactions connected with phase changes. Dilatometric tests of materials made it possible to determine thermal expansion coefficient. Mean coefficient values are included within the range from 5.5 x 106mm/°C to 10.0 x 106mm/°C. The highest mean value of thermal expansion coefficient was obtained for Nd2Zr2O7 powder and the lowest one for La2Zr2O7 powder. The lowest thermal diffusivity value at room temperature was shown by Nd2Zr2O7 powder, and the highest one by 8YSZ powder (0.215 mm2/s).


Sign in / Sign up

Export Citation Format

Share Document