The distribution and variability of low-level cloud in the North Atlantic trades

2014 ◽  
Vol 140 (684) ◽  
pp. 2364-2374 ◽  
Author(s):  
L. Nuijens ◽  
I. Serikov ◽  
L. Hirsch ◽  
K. Lonitz ◽  
B. Stevens
Science ◽  
1992 ◽  
Vol 256 (5061) ◽  
pp. 1311-1313 ◽  
Author(s):  
P. G. Falkowski ◽  
Y. Kim ◽  
Z. Kolber ◽  
C. Wilson ◽  
C. Wirick ◽  
...  

2021 ◽  
Author(s):  
Luis Gimeno-Sotelo ◽  
Patricia de Zea Bermudez ◽  
Iago Algarra ◽  
Luis Gimeno

Abstract The Great Plains Low-Level Jet system consists of very strong winds in the lower troposphere that transport a huge amount of moisture from the Gulf of Mexico to the American Great Plains. This paper aims to study the extremes of the Transported Moisture (TM) from the GPLLJ source region to the jet domain; and, for low and high TM, to analyze the extremal dependence between the upper tail of the precipitation in the GPLLJ sink region and the lower tail of the tropospheric stability in that region (omega). The declustered extremes of TM were analyzed using Peaks Over Threshold (POT). A non-stationary Exponential model was fitted to the cluster maxima. Estimated return levels show that the extremes of TM are expected to decrease in the future. This is meteorologically congruent with the known displacement of the western edge of the North Atlantic Subtropical High, which controls atmospheric circulation in the North Atlantic, and to a higher scale with the change of phase from negative to positive of the Atlantic Multidecadal Oscillation. Bilogistic and Logistic models were fitted to the extremes of (-omega, precipitation) for low and high TM, respectively. The extremal dependence between "-omega" and precipitation proves to be stronger in the case of high TM. This confirms that dynamical instability represented by “-omega” is the most important parameter for achieving high values of precipitation once there is a mechanism that allows the continuous supply of large amounts of moisture, such as the derived from a low-level jet system.


2015 ◽  
Vol 72 (4) ◽  
pp. 1428-1446 ◽  
Author(s):  
Matthias Brueck ◽  
Louise Nuijens ◽  
Bjorn Stevens

Abstract The seasonality in large-scale meteorology and low-level cloud amount (CClow) is explored for a 5° × 5° area in the North Atlantic trades, using 12 years of ERA-Interim and MODIS data, supported by 2 years of Barbados Cloud Observatory (BCO) measurements. From boreal winter to summer, large-scale subsiding motion changes to rising motion, along with an increase in sea surface temperature, a clockwise turning and weakening of low-level winds, and reduced cold-air advection, lower-tropospheric stability (LTS), and surface fluxes. However, CClow is relatively invariant around 30%, except for a minimum of 20% in fall. This minimum is only pronounced when MODIS scenes with large high-level cloud amount are excluded, and a winter maximum in CClow is more pronounced at the BCO. On monthly time scales, wind speed has the best correlation with CClow. Existing large-eddy simulations suggest that the wind speed–CClow correlation may be explained by a direct deepening response of the trade wind layer to stronger winds. Large correlations of wind direction and advection with CClow also suggest that large-scale flow patterns matter. Smaller correlations with CClow are observed for LTS and surface evaporation, as well as negligible correlations for relative humidity (RH) and vertical velocity. However, these correlations considerably increase when only summer is considered. On synoptic time scales, all correlations drop substantially, whereby wind speed, RH, and surface sensible heat flux remain the leading parameters. The lack of a single strong predictor emphasizes that the combined effect of parameters is necessary to explain variations in CClow in the trades.


2005 ◽  
Vol 18 (12) ◽  
pp. 1986-2003 ◽  
Author(s):  
Sébastien Conil ◽  
Laurent Z-X. Li

Abstract The observations of the ocean–atmosphere–sea ice have recently revealed that the oceanic surfaces can have a subtle but significant impact on the atmospheric long-term fluctuations. Low-frequency variations and long-term trends of the North Atlantic atmospheric circulation have been partly related to particular SST and sea ice features. In this work, the influence of typical tripolar SST and dipolar sea ice anomalies in the North Atlantic–Arctic on the atmosphere is investigated. A large ensemble of AGCM simulations forced by three different anomalous boundary conditions (SST, sea ice, and SST + sea ice) are used. The linearity of the simulated response in the winter season is particularly assessed. In these experiments, while the winter low-level temperature response is mainly symmetric about the sign of the forcing, the asymmetric part of the geopotential response is substantial. The sea ice forcing maintains a baroclinic response with a strong temperature anomaly in the vicinity of the forcing but with a weak vertical penetration. The SST maintains an NAO-like equivalent barotropic temperature and geopotential height response that extends throughout the troposphere. It is also shown that the combination of the two forcings is mainly linear for the low-level temperature and nonlinear for the geopotential height. While the SST forcing seems to be the main contributor to the total temperature and geopotential height responses, the sea ice forcing appears to introduce significant nonlinear perturbations.


1892 ◽  
Vol 34 (872supp) ◽  
pp. 13940-13941
Author(s):  
Richard Beynon

2019 ◽  
pp. 73-81
Author(s):  
Oleh Poshedin

The purpose of the article is to describe the changes NATO undergoing in response to the challenges of our time. Today NATO, as a key element of European and Euro-Atlantic security, is adapting to changes in the modern security environment by increasing its readiness and ability to respond to any threat. Adaptation measures include the components required to ensure that the Alliance can fully address the security challenges it might face. Responsiveness NATO Response Force enhanced by developing force packages that are able to move rapidly and respond to potential challenges and threats. As part of it, was established a Very High Readiness Joint Task Force, a new Allied joint force that deploy within a few days to respond to challenges that arise, particularly at the periphery of NATO’s territory. NATO emphasizes, that cyber defence is part of NATO’s core task of collective defence. A decision as to when a cyber attack would lead to the invocation of Article 5 would be taken by the North Atlantic Council on a case-by-case basis. Cooperation with NATO already contributes to the implementation of national security and defense in state policy. At the same time, taking into account that all decision-making in NATO based on consensus, Ukraine’s membership in the Alliance quite vague perspective. In such circumstances, in Ukraine you often can hear the idea of announcement of a neutral status. It is worth reminding that non-aligned status did not save Ukraine from Russian aggression. Neutral status will not accomplish it either. All talks about neutrality and the impossibility of Ukraine joining NATO are nothing but manipulations, as well as recognition of the Ukrainian territory as Russian Federation area of influence (this country seeks to sabotage the Euro-Atlantic movement of Ukraine). Think about it, Moldova’s Neutrality is enshrined in the country’s Constitution since 1994. However, this did not help Moldova to restore its territorial integrity and to force Russia to withdraw its troops and armaments from Transnistria.


Sign in / Sign up

Export Citation Format

Share Document