scholarly journals Optimal and scalable methods to approximate the solutions of large‐scale Bayesian problems: theory and application to atmospheric inversion and data assimilation

2018 ◽  
Vol 144 (711) ◽  
pp. 365-390 ◽  
Author(s):  
N. Bousserez ◽  
Daven K. Henze

2011 ◽  
Vol 21 (12) ◽  
pp. 3619-3626 ◽  
Author(s):  
ALBERTO CARRASSI ◽  
STÉPHANE VANNITSEM

In this paper, a method to account for model error due to unresolved scales in sequential data assimilation, is proposed. An equation for the model error covariance required in the extended Kalman filter update is derived along with an approximation suitable for application with large scale dynamics typical in environmental modeling. This approach is tested in the context of a low order chaotic dynamical system. The results show that the filter skill is significantly improved by implementing the proposed scheme for the treatment of the unresolved scales.



2012 ◽  
Vol 27 (1) ◽  
pp. 124-140 ◽  
Author(s):  
Bin Liu ◽  
Lian Xie

Abstract Accurately forecasting a tropical cyclone’s (TC) track and intensity remains one of the top priorities in weather forecasting. A dynamical downscaling approach based on the scale-selective data assimilation (SSDA) method is applied to demonstrate its effectiveness in TC track and intensity forecasting. The SSDA approach retains the merits of global models in representing large-scale environmental flows and regional models in describing small-scale characteristics. The regional model is driven from the model domain interior by assimilating large-scale flows from global models, as well as from the model lateral boundaries by the conventional sponge zone relaxation. By using Hurricane Felix (2007) as a demonstration case, it is shown that, by assimilating large-scale flows from the Global Forecast System (GFS) forecasts into the regional model, the SSDA experiments perform better than both the original GFS forecasts and the control experiments, in which the regional model is only driven by lateral boundary conditions. The overall mean track forecast error for the SSDA experiments is reduced by over 40% relative to the control experiments, and by about 30% relative to the GFS forecasts, respectively. In terms of TC intensity, benefiting from higher grid resolution that better represents regional and small-scale processes, both the control and SSDA runs outperform the GFS forecasts. The SSDA runs show approximately 14% less overall mean intensity forecast error than do the control runs. It should be noted that, for the Felix case, the advantage of SSDA becomes more evident for forecasts with a lead time longer than 48 h.



2007 ◽  
Vol 64 (11) ◽  
pp. 3766-3784 ◽  
Author(s):  
Philippe Lopez

Abstract This paper first reviews the current status, issues, and limitations of the parameterizations of atmospheric large-scale and convective moist processes that are used in numerical weather prediction and climate general circulation models. Both large-scale (resolved) and convective (subgrid scale) moist processes are dealt with. Then, the general question of the inclusion of diabatic processes in variational data assimilation systems is addressed. The focus is put on linearity and resolution issues, the specification of model and observation error statistics, the formulation of the control vector, and the problems specific to the assimilation of observations directly affected by clouds and precipitation.



2015 ◽  
Vol 2 (2) ◽  
pp. 513-536 ◽  
Author(s):  
I. Grooms ◽  
Y. Lee

Abstract. Superparameterization (SP) is a multiscale computational approach wherein a large scale atmosphere or ocean model is coupled to an array of simulations of small scale dynamics on periodic domains embedded into the computational grid of the large scale model. SP has been successfully developed in global atmosphere and climate models, and is a promising approach for new applications. The authors develop a 3D-Var variational data assimilation framework for use with SP; the relatively low cost and simplicity of 3D-Var in comparison with ensemble approaches makes it a natural fit for relatively expensive multiscale SP models. To demonstrate the assimilation framework in a simple model, the authors develop a new system of ordinary differential equations similar to the two-scale Lorenz-'96 model. The system has one set of variables denoted {Yi}, with large and small scale parts, and the SP approximation to the system is straightforward. With the new assimilation framework the SP model approximates the large scale dynamics of the true system accurately.



2020 ◽  
Author(s):  
Elizabeth Cooper ◽  
Eleanor Blyth ◽  
Hollie Cooper ◽  
Rich Ellis ◽  
Ewan Pinnington ◽  
...  

Abstract. Soil moisture predictions from land surface models are important in hydrological, ecological and meteorological applications. In recent years the availability of wide-area soil-moisture measurements has increased, but few studies have combined model-based soil moisture predictions with in-situ observations beyond the point scale. Here we show that we can markedly improve soil moisture estimates from the JULES land surface model using field scale observations and data assimilation techniques. Rather than directly updating soil moisture estimates towards observed values, we optimize constants in the underlying pedotransfer functions, which relate soil texture to JULES soil physics parameters. In this way we generate a single set of newly calibrated pedotransfer functions based on observations from a number of UK sites with different soil textures. We demonstrate that calibrating a pedotransfer function in this way can improve the performance of land surface models, leading to the potential for better flood, drought and climate projections.



2013 ◽  
Vol 10 (3) ◽  
pp. 2879-2925 ◽  
Author(s):  
R. C. D. Paiva ◽  
W. Collischonn ◽  
M.-P. Bonnet ◽  
L. G. G. de Gonçalves ◽  
S. Calmant ◽  
...  

Abstract. In this work we introduce and evaluate a data assimilation framework for gauged and radar altimetry-based discharge and water levels applied to a large scale hydrologic-hydrodynamic model for stream flow forecasts over the Amazon River basin. We used the process-based hydrological model called MGB-IPH coupled with a river hydrodynamic module using a storage model for floodplains. The Ensemble Kalman Filter technique was used to assimilate information from hundreds of gauging and altimetry stations based on ENVISAT satellite data. Model state variables errors were generated by corrupting precipitation forcing, considering log-normally distributed, time and spatially correlated errors. The EnKF performed well when assimilating in situ discharge, by improving model estimates at the assimilation sites and also transferring information to ungauged rivers reaches. Altimetry data assimilation improves results at a daily basis in terms of water levels and discharges with minor degree, even though radar altimetry data has a low temporal resolution. Sensitivity tests highlighted the importance of the magnitude of the precipitation errors and that of their spatial correlation, while temporal correlation showed to be dispensable. The deterioration of model performance at some unmonitored reaches indicates the need for proper characterization of model errors and spatial localization techniques for hydrological applications. Finally, we evaluated stream flow forecasts for the Amazon basin based on initial conditions produced by the data assimilation scheme and using the ensemble stream flow prediction approach where the model is forced by past meteorological forcings. The resulting forecasts agreed well with the observations and maintained meaningful skill at large rivers even for long lead times, e.g. > 90 days at the Solimões/Amazon main stem. Results encourage the potential of hydrological forecasts at large rivers and/or poorly monitored regions by combining models and remote sensing information.



2019 ◽  
Vol 147 (4) ◽  
pp. 1107-1126 ◽  
Author(s):  
Jonathan Poterjoy ◽  
Louis Wicker ◽  
Mark Buehner

Abstract A series of papers published recently by the first author introduce a nonlinear filter that operates effectively as a data assimilation method for large-scale geophysical applications. The method uses sequential Monte Carlo techniques adopted by particle filters, which make no parametric assumptions for the underlying prior and posterior error distributions. The filter also treats the underlying dynamical system as a set of loosely coupled systems to effectively localize the effect observations have on posterior state estimates. This property greatly reduces the number of particles—or ensemble members—required for its implementation. For these reasons, the method is called the local particle filter. The current manuscript summarizes algorithmic advances made to the local particle filter following recent tests performed over a hierarchy of dynamical systems. The revised filter uses modified vector weight calculations and probability mapping techniques from earlier studies, and new strategies for improving filter stability in situations where state variables are observed infrequently with very accurate measurements. Numerical experiments performed on low-dimensional data assimilation problems provide evidence that supports the theoretical benefits of the new improvements. As a proof of concept, the revised particle filter is also tested on a high-dimensional application from a real-time weather forecasting system at the NOAA/National Severe Storms Laboratory (NSSL). The proposed changes have large implications for researchers applying the local particle filter for real applications, such as data assimilation in numerical weather prediction models.



2010 ◽  
Vol 10 (13) ◽  
pp. 6097-6115 ◽  
Author(s):  
M. Claeyman ◽  
J.-L. Attié ◽  
L. El Amraoui ◽  
D. Cariolle ◽  
V.-H. Peuch ◽  
...  

Abstract. This paper presents an evaluation of a new linear parameterization valid for the troposphere and the stratosphere, based on a first order approximation of the carbon monoxide (CO) continuity equation. This linear scheme (hereinafter noted LINCO) has been implemented in the 3-D Chemical Transport Model (CTM) MOCAGE (MOdèle de Chimie Atmospherique Grande Echelle). First, a one and a half years of LINCO simulation has been compared to output obtained from a detailed chemical scheme output. The mean differences between both schemes are about ±25 ppbv (part per billion by volume) or 15% in the troposphere and ±10 ppbv or 100% in the stratosphere. Second, LINCO has been compared to diverse observations from satellite instruments covering the troposphere (Measurements Of Pollution In The Troposphere: MOPITT) and the stratosphere (Microwave Limb Sounder: MLS) and also from aircraft (Measurements of ozone and water vapour by Airbus in-service aircraft: MOZAIC programme) mostly flying in the upper troposphere and lower stratosphere (UTLS). In the troposphere, the LINCO seasonal variations as well as the vertical and horizontal distributions are quite close to MOPITT CO observations. However, a bias of ~−40 ppbv is observed at 700 Pa between LINCO and MOPITT. In the stratosphere, MLS and LINCO present similar large-scale patterns, except over the poles where the CO concentration is underestimated by the model. In the UTLS, LINCO presents small biases less than 2% compared to independent MOZAIC profiles. Third, we assimilated MOPITT CO using a variational 3D-FGAT (First Guess at Appropriate Time) method in conjunction with MOCAGE for a long run of one and a half years. The data assimilation greatly improves the vertical CO distribution in the troposphere from 700 to 350 hPa compared to independent MOZAIC profiles. At 146 hPa, the assimilated CO distribution is also improved compared to MLS observations by reducing the bias up to a factor of 2 in the tropics. This study confirms that the linear scheme is able to simulate reasonably well the CO distribution in the troposphere and in the lower stratosphere. Therefore, the low computing cost of the linear scheme opens new perspectives to make free runs and CO data assimilation runs at high resolution and over periods of several years.



2016 ◽  
Vol 144 (8) ◽  
pp. 2927-2945
Author(s):  
Nedjeljka Žagar ◽  
Jeffrey Anderson ◽  
Nancy Collins ◽  
Timothy Hoar ◽  
Kevin Raeder ◽  
...  

Abstract Global data assimilation systems for numerical weather prediction (NWP) are characterized by significant uncertainties in tropical analysis fields. Furthermore, the largest spread of global ensemble forecasts in the short range on all scales is in the tropics. The presented results suggest that these properties hold even in the perfect-model framework and the ensemble Kalman filter data assimilation with a globally homogeneous network of wind and temperature profiles. The reasons for this are discussed by using the modal analysis, which provides information about the scale dependency of analysis and forecast uncertainties and information about the efficiency of data assimilation to reduce the prior uncertainties in the balanced and inertio-gravity dynamics. The scale-dependent representation of variance reduction of the prior ensemble by the data assimilation shows that the peak efficiency of data assimilation is on the synoptic scales in the midlatitudes that are associated with quasigeostrophic dynamics. In contrast, the variance associated with the inertia–gravity modes is less successfully reduced on all scales. A smaller information content of observations on planetary scales with respect to the synoptic scales is discussed in relation to the large-scale tropical uncertainties that current data assimilation methodologies do not address successfully. In addition, it is shown that a smaller reduction of the large-scale uncertainties in the prior state for NWP in the tropics than in the midlatitudes is influenced by the applied radius for the covariance localization.



2020 ◽  
Vol 148 (8) ◽  
pp. 3203-3224
Author(s):  
Man-Yau Chan ◽  
Fuqing Zhang ◽  
Xingchao Chen ◽  
L. Ruby Leung

Abstract Geostationary infrared satellite observations are spatially dense [>1/(20 km)2] and temporally frequent (>1 h−1). These suggest the possibility of using these observations to constrain subsynoptic features over data-sparse regions, such as tropical oceans. In this study, the potential impacts of assimilating water vapor channel brightness temperature (WV-BT) observations from the geostationary Meteorological Satellite 7 (Meteosat-7) on tropical convection analysis and prediction were systematically examined through a series of ensemble data assimilation experiments. WV-BT observations were assimilated hourly into convection-permitting ensembles using Penn State’s ensemble square root filter (EnSRF). Comparisons against the independently observed Meteosat-7 window channel brightness temperature (Window-BT) show that the assimilation of WV-BT generally improved the intensities and locations of large-scale cloud patterns at spatial scales larger than 100 km. However, comparisons against independent soundings indicate that the EnSRF analysis produced a much stronger dry bias than the no data assimilation experiment. This strong dry bias is associated with the use of the simulated WV-BT from the prior mean during the EnSRF analysis step. A stochastic variant of the ensemble Kalman filter (NoMeanSF) is proposed. The NoMeanSF algorithm was able to assimilate the WV-BT without causing such a strong dry bias and the quality of the analyses’ horizontal cloud pattern is similar to EnSRF’s analyses. Finally, deterministic forecasts initiated from the NoMeanSF analyses possess better horizontal cloud patterns above 500 km than those of the EnSRF. These results suggest that it might be better to assimilate all-sky WV-BT through the NoMeanSF algorithm than the EnSRF algorithm.



Sign in / Sign up

Export Citation Format

Share Document