A rapid sample preparation method for mass spectrometric characterization of N-linked glycans

2005 ◽  
Vol 19 (16) ◽  
pp. 2331-2336 ◽  
Author(s):  
Ying Qing Yu ◽  
Martin Gilar ◽  
Jennifer Kaska ◽  
John C. Gebler
2021 ◽  
Author(s):  
Chiththaka Chaturanga D B Imihami Mudiyanselage ◽  
Matthias Schmidt ◽  
Yalda Davoudpour ◽  
Hryhoriy Stryhanyuk ◽  
Hans Richnow ◽  
...  

<p>Studying the spatial distribution of bacteria and characterizing the soil chemistry (i.e., elemental, isotopic and molecular composition) underpins the comprehensive understanding of rhizosphere associated processes. During the past decades, several stand-alone methods have been developed to investigate soil chemistry, nutrient cycling and plant nutrition. However, individual approaches as stand-alone are not capable of providing an overall rhizosphere processes involving soil, root and microbes in a spatial context, as there is no common sample preparation method available to satisfy individual needs of each technique. Here, we present i) a sample preparation method, which includes soil embedding, sectioning and ii) a correlative imaging and image registration workflow, which allows for characterization of minerals, roots and microbes by different high-resolution imaging and microanalytical techniques. This allows for conducting rhizosphere studies on different scales, focusing on root-soil-microbe interfaces with spatial resolution of nano-meter scale. Hydrophilic, immunohistochemistry compatible, low viscosity LR White resin was used to embed and stabilize the soil and make it ultra-high vacuum compatible. We employed water-jet cutting as a novel approach to slice the embedded samples, and, by doing so, avoided polishing of the surface which often leads to translocation of sample material (smearing). The quality of this embedding was analyzed by and Helium Ion Microscopy (HIM). Epifluorescence microscopy in combination with Catalyzed Reporter Deposition-Fluorescence in-situ Hybridization (CARD-FISH) was employed to accurately identify and determine the spatial distribution of bacteria in the embedded sample, thus avoiding ambiguities from high levels of auto-fluorescence emitted by soil particles and organic matter. Chemical mapping of the rhizosphere was acquired by SEM/EDX, ToF-SIMS, nanoSIMS for elemental, molecular and isotopic characterization, respectively, and µ-Raman microscopy for specific identification of minerals.</p><p>In summary, we demonstrate that LR White embedding and water-jet cutting of soil in combination with CARD-FISH and a correlative microscopic workflow, allows for a comprehensive characterization of biotic and abiotic components in the rhizosphere. The developed sample preparation method can facilitate the various requirements of involved microscopy techniques and individual workflows for imaging and image registration to analyze data. We foresee that this approach will establish an excellent platform to study various soil processes and synergistic understanding of complex rhizosphere processes.</p>


2011 ◽  
Vol 25 (11) ◽  
pp. 5158-5164 ◽  
Author(s):  
Roham Eslahpazir ◽  
Martin Kupsta ◽  
Qi Liu ◽  
Douglas G. Ivey

Applied Nano ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 289-302
Author(s):  
Adrianna Glinkowska Mares ◽  
Natalia Feiner-Gracia ◽  
Yolanda Muela ◽  
Gema Martínez ◽  
Lidia Delgado ◽  
...  

Organ-on-a-chip technology is a 3D cell culture breakthrough of the last decade. This rapidly developing field of bioengineering intertwined with microfluidics provides new insights into disease development and preclinical drug screening. So far, optical and fluorescence microscopy are the most widely used methods to monitor and extract information from these models. Meanwhile transmission electron microscopy (TEM), despite its wide use for the characterization of nanomaterials and biological samples, remains unexplored in this area. In our work we propose a TEM sample preparation method, that allows to process a microfluidic chip without its prior deconstruction, into TEM-compatible specimens. We demonstrated preparation of tumor blood vessel-on-a-chip model and consecutive steps to preserve the endothelial cells lining microfluidic channel, for the chip’s further transformation into ultrathin sections. This approach allowed us to obtain cross-sections of the microchannel with cells cultured inside, and to observe cell adaptation to the channel geometry, as well as the characteristic for endothelial cells tight junctions. The proposed sample preparation method facilitates the electron microscopy ultrastructural characterization of biological samples cultured in organ-on-a-chip device.


2020 ◽  
Vol 50 (1) ◽  
Author(s):  
Yu-Hao Deng

Abstract Sample preparation is significantly important to the high-resolution transmission electron microscopy (HRTEM) characterization of nanomaterials. However, many general organic solvents can dissolve the necessary organic polymer support layer in TEM grid, which causes it difficult to obtain high-quality samples of oil-soluble nanomaterials. In this study, a new sample preparation method for oil-soluble nanomaterials has been developed by using the sublimable material as a transition layer. Experiments also show that there is no damage to TEM grids and high-quality HRTEM images can be obtained via this method. This approach paves the way to applicable HRTEM sample preparation of oil-soluble nanomaterials.


2014 ◽  
Vol 13 (3) ◽  
pp. 1167-1176 ◽  
Author(s):  
Salina Abdul Rahman ◽  
Ed Bergström ◽  
Christopher J. Watson ◽  
Katherine M. Wilson ◽  
David A. Ashford ◽  
...  

Author(s):  
Jian-Shing Luo ◽  
Hsiu Ting Lee

Abstract Several methods are used to invert samples 180 deg in a dual beam focused ion beam (FIB) system for backside milling by a specific in-situ lift out system or stages. However, most of those methods occupied too much time on FIB systems or requires a specific in-situ lift out system. This paper provides a novel transmission electron microscopy (TEM) sample preparation method to eliminate the curtain effect completely by a combination of backside milling and sample dicing with low cost and less FIB time. The procedures of the TEM pre-thinned sample preparation method using a combination of sample dicing and backside milling are described step by step. From the analysis results, the method has applied successfully to eliminate the curtain effect of dual beam FIB TEM samples for both random and site specific addresses.


Author(s):  
Swaminathan Subramanian ◽  
Khiem Ly ◽  
Tony Chrastecky

Abstract Visualization of dopant related anomalies in integrated circuits is extremely challenging. Cleaving of the die may not be possible in practical failure analysis situations that require extensive electrical fault isolation, where the failing die can be submitted of scanning probe microscopy analysis in various states such as partially depackaged die, backside thinned die, and so on. In advanced technologies, the circuit orientation in the wafer may not align with preferred crystallographic direction for cleaving the silicon or other substrates. In order to overcome these issues, a focused ion beam lift-out based approach for site-specific cross-section sample preparation is developed in this work. A directional mechanical polishing procedure to produce smooth damage-free surface for junction profiling is also implemented. Two failure analysis applications of the sample preparation method to visualize junction anomalies using scanning microwave microscopy are also discussed.


Sign in / Sign up

Export Citation Format

Share Document