Deep learning approach for guiding three‐dimensional computed tomography reconstruction of lower limbs for robotically‐assisted total knee arthroplasty

Author(s):  
Zheng Li ◽  
Xiaofeng Zhang ◽  
Lele Ding ◽  
Kebin Du ◽  
Jun Yan ◽  
...  
2009 ◽  
Vol 24 (7) ◽  
pp. 1103-1110 ◽  
Author(s):  
Hideki Mizu-uchi ◽  
Shuichi Matsuda ◽  
Hiromasa Miura ◽  
Hidehiko Higaki ◽  
Ken Okazaki ◽  
...  

2019 ◽  
Vol 34 (01) ◽  
pp. 047-056
Author(s):  
Takao Kaneko ◽  
Norihiko Kono ◽  
Yuta Mochizuki ◽  
Masaru Hada ◽  
Shinya Toyoda ◽  
...  

AbstractPorous tantalum tibial component is durable with excellent bone ingrowth, higher knee scores, and long-term survivorship. However, to our knowledge, the effect of posterior cruciate-retaining (CR) and posterior cruciate-substituting (PS) porous tantalum tibial component has not been reported. The aim of the current study was to investigate the prosthetic bone quality between CR porous tantalum tibial component and PS using three-dimensional multi-detector-row computed tomography (3D-MDCT). Porous twenty-two (22) CR total knee arthroplasties and 22 PS received 3D-MDCT at every 6 months up to 5.5 years postoperatively to assess prosthetic bone quality (bone marrow contents/tissue volumes [BMC/TV, mg/cm3]) underneath the pegs of porous tantalum modular tibial component. Clinical outcomes (Knee Society score [KSS], Western Ontario and McMaster Universities (WOMAC), FJS-12, Patella score) were evaluated at a minimum follow-up period of 5.5 years. No statistically significant differences were found in age, gender, body mass index, KSS, and BMC/TV volumes in the proximal tibia between the two groups before total knee arthroplasty (TKA). There were also no significant differences between the CR and PS groups with regard to BMC/TV at every 6 months up to 5.5 years after TKA. At 5.5 years postoperatively, there was no significant difference between the two groups in terms of the KSS, WOMAC, forgotten joint score (FJS-12), and Patella score. The present study revealed that the prosthetic bone quality of the CR porous tantalum tibial component and PS were equivalent at every 6 months up to 5.5 years after TKA. This study reflects level II evidence.


Author(s):  
Kevin B. Marchand ◽  
Hytham S. Salem ◽  
Kevin K. Mathew ◽  
Steven F. Harwin ◽  
Michael A. Mont ◽  
...  

AbstractAdvanced imaging used in robotic-assisted total knee arthroplasty (TKA), such as computed tomography (CT)-based three-dimensional (3D) planning, may provide an accurate means of implant sizing preoperatively. The purpose of this study was to examine preoperative CT-based implant planning accuracy for robotic-assisted TKA in patients who have (1) varus deformities, (2) valgus deformities, (3) neutral alignment, and (4) retained hardware. A total of 393 patients underwent a robotic-assisted TKA by a single surgeon received preoperative CT scans. The surgeon reviewed the CT-based model preoperatively and recorded the expected size of the components. The final implants used in each case were recorded and compared with the surgeon's preoperative plan. In all groups of patients, the surgeon's CT-based implant plan was within one size of the implant utilized 100% of the time for both the tibiae and femora. Overall, the surgeon was exactly matched in 319 (81%) and 315 (80%) cases for the femoral and tibial components, respectively. For the femoral component, the mean age for patients in whom the original plan was exactly matched was younger than those whose implants were upsized and older than patients those implants were downsized (p = 0.024). Other patient demographics and preoperative knee alignment were not associated with predictive accuracy for femoral or tibial components. Our results demonstrate how preoperative CT-based, 3D planning for robotic-assisted TKA is accurate to within one size of the components in every case (100%), and exactly matched in 80%. The results of this study are important because they demonstrate how CT-based preoperative implant planning for TKA is reliable and accurate across all native knee alignments and other patient-specific factors. In addition, they build on a previous study by the same single surgeon, demonstrating that predictive ability can improve over time. This may be important as we move toward more outpatient surgery with less ability for prostheses inventory at ambulatory sites.


The Knee ◽  
2019 ◽  
Vol 26 (5) ◽  
pp. 1102-1110 ◽  
Author(s):  
Kensuke Yoshino ◽  
Shigeo Hagiwara ◽  
Junichi Nakamura ◽  
Tadashi Tsukeoka ◽  
Yoshikazu Tsuneizumi ◽  
...  

Author(s):  
Mehmet Emin Simsek ◽  
Mustafa Akkaya ◽  
Safa Gursoy ◽  
Özgür Kaya ◽  
Murat Bozkurt

AbstractThis study aimed to investigate whether overhang or underhang around the tibial component that occurs during the placement of tibial baseplates was affected by different slope angles of the tibial plateau and determine the changes in the lateral and medial plateau diameters while changing the slope angle in total knee arthroplasty. Three-dimensional tibia models were reconstructed using the computed tomography scans of 120 tibial dry bones. Tibial plateau slope cuts were performed with 9, 7, 5, 3, and 0 degrees of slope angles 2-mm below the subchondral bone in the deepest point of the medial plateau. Total, lateral, and medial tibial plateau areas and overhang/underhang rates were measured at each cut level. Digital implantations of the asymmetric and symmetric tibial baseplates were made on the tibial plateau with each slope angles. Following the implantations, the slope angle that prevents overhang or underhang at the bone border and the slope angle that has more surface area was identified. A significant increase was noted in the total tibial surface area, lateral plateau surface area, and lateral anteroposterior distance, whereas the slope cut angles were changed from 9 to 0 degrees in both gender groups. It was found that the amount of posteromedial underhang and posterolateral overhang increased in both the asymmetric and symmetric tibial baseplates when the slope angle was changed from 0 to 9 degrees. Although the mediolateral diameter did not change after the proximal tibia cuts at different slope angles, the surface area and anteroposterior diameter of the lateral plateau could change, leading to increased lateral plateau area. Although prosthesis designs are highly compatible with the tibial surface area, it should be noted that the component overhangs, especially beyond the posterolateral edge, it can be prevented by changing the slope cut angle in males and females.


Sign in / Sign up

Export Citation Format

Share Document