CAT4 (Cable Actuated Truss?4 Degrees of Freedom): A Novel 4 DOF Cable Actuated Parallel Manipulator

2002 ◽  
Vol 19 (12) ◽  
pp. 605-615 ◽  
Author(s):  
Craig Kossowski ◽  
Leila Notash
2014 ◽  
pp. 545-553 ◽  
Author(s):  
Samah Shayya ◽  
Sébastien Krut ◽  
Olivier Company ◽  
Cédric Baradat ◽  
François Pierrot

2011 ◽  
Vol 201-203 ◽  
pp. 1849-1853
Author(s):  
Jing Li Yu ◽  
Gang Cheng ◽  
Shuai Zhang ◽  
De Kun Zhang

For a novel 3SPS+1PS parallel manipulator with 4 degrees of freedom including three rotations and one translation, the formulae for solving the inverse kinematics equations are derived based on quaternion method. Unit quaternion is used to represent the position and orientation of moving platform, and the singularities caused by Euler angles are avoided. Combining the topological structure characteristics of the parallel manipulator, it only has three rotations when its moving platform is at a given translation position. Based on the inverse position/pose equations and the all the constraints of the parallel manipulator, the discrete algorithm for the orientation workspaces of 3SPS+1PS parallel manipulator where the moving platform is at some different given translation positions are designed. The research builds the theoretical basis for optimizing the orientation workspace with given position.


2006 ◽  
Vol 129 (12) ◽  
pp. 1243-1250 ◽  
Author(s):  
Oscar Salgado ◽  
Oscar Altuzarra ◽  
Enrique Amezua ◽  
Alfonso Hernández

A parallelogram-based 4 degrees-of-freedom parallel manipulator is presented in this paper. The manipulator can generate the so-called Schönflies motion that allows the end effector to translate in all directions and rotate around an axis parallel to a fixed direction. The theory of group of displacements is applied in the synthesis of this manipulator, which employs parallelograms in every limb. The planar parallelogram kinematic chain provides a high rotational capability and an improved stiffness to the manipulator. This paper shows the kinematic analysis of the manipulator, including the closed-form resolution of the forward and inverse position problems, the velocity, and the singularity analysis. Finally, a prototype of the manipulator, adding some considerations about its singularity-free design, and some technical applications in which the manipulator can be used are presented.


2007 ◽  
Vol 31 (4) ◽  
pp. 495-507
Author(s):  
Sureyya Sahin ◽  
Leila Notash

The kinematic modelling and analysis of a 4 degrees of freedom wire-actuated parallel manipulator with redundant actuation is investigated. The manipulator employs combinations of rigid links, joints and wires. Hybrid actuation of joints and wires, two actuated joints and three actuated wires, is used. Position and first and second order kinematics of the closed-loop manipulator are formulated based on matrix exponentials. The transfer of first and second order kinematic variables, i.e., wire/joint velocities and accelerations, among the manipulator task space coordinates, active and passive joint coordinates and wire lengths are provided.


2007 ◽  
Vol 31 (4) ◽  
pp. 509-518 ◽  
Author(s):  
Leila Notash ◽  
Andrew Horne ◽  
Victoria Lee

In this article, an experimental calibration of the constraining linkage of a wire-actuated parallel robot is discussed. The experimental test bed includes a prototyped 4 degrees of freedom wire-actuated parallel manipulator and an optical tracking system. The parallel manipulator employs hybrid actuation of joints and wires and includes a rigid branch to constrain the motion of its mobile platform in roll and yaw rotations. The kinematic calibration of the rigid branch is performed. A point-to-point path is designed for the manipulator and an optical tracking system is used as an external measuring device to track a tool attached to the mobile platform and to register the manipulator poses. The deviation between the actual (measured) pose of the mobile platform and the calculated pose (via direct kinematics using the joint encoders), which could be due to errors in the kinematic parameters, actuators and sensors, is used as the error function.


Author(s):  
Vigen Arakelian ◽  
Sylvain Gue´gan ◽  
Se´bastien Briot

In this paper we present an analytical approach for the static and dynamic analysis of the PAMINSA, a new 4 degrees of freedom parallel manipulator that has been designed at the I.N.S.A. in Rennes. On the base of the developed static model, the input torques due to the static loads are reduced by means of the optimum redistribution of the moving link masses. The analytical dynamic modeling of the PAMINSA by means of Lagrange equations is achieved. A numerical example and a comparison between the suggested analytical model and an ADAMS software simulation are presented.


Author(s):  
Henrique Simas ◽  
Raffaele Di Gregorio

Schoenflies-motion generators (SMGs) are 4-degrees-of-freedom (dof) manipulators whose end effector can perform translations along three independent directions, and rotations around one fixed direction (Schoenflies motions). Such motions constitute the 4-dimensional (4-D) Schoenflies subgroup of the 6-D displacement group. The most known SMGs are the serial robots named SCARA. Pick-and-place tasks are typical industrial applications that SMGs can accomplish. In the literature, 3T1R parallel manipulators (PMs) have been also proposed as SMGs. Here, a somehow novel 3T1R PM is presented and studied. Its finite and instantaneous kinematics are analyzed in depth, and analytic and geometric tools that are useful for its design are presented. The proposed SMG has a single-loop not-overconstrained architecture with actuators on or near the base and can make the end effector perform a complete rotation.


Author(s):  
F. J. Castillo-Garcia ◽  
P. Rea ◽  
A. Gonzalez-Rodriguez ◽  
E. Ottaviano

This paper proposes the design and control strategy for a four degrees-of-freedom spatial cable-suspended parallel robot for pick and place operations. Pick and place is a repetitive task requiring payload changes for the movement to pick-up the object, and the movement to the nal pose to release the manipulated object. In this paper, a new robust control strategy has been proposed, together with proper trajectories for the required operation. The control strategy consists on the system decoupling and linearization by means of a feedforward term and a cascade PD controller. The main advantage of the proposed solution is that its design can be scalable in size spanning from centimeters to meters with a relatively good positioning accuracy. Finally, simulations are reported to show the overall performances of the proposed con guration for pick and place operations with a medium size manipulator.


Robotica ◽  
2021 ◽  
pp. 1-26
Author(s):  
Soheil Zarkandi

Abstract Reducing consumed power of a robotic machine has an essential role in enhancing its energy efficiency and must be considered during its design process. This paper deals with dynamic modeling and power optimization of a four-degrees-of-freedom flight simulator machine. Simulator cabin of the machine has yaw, pitch, roll and heave motions produced by a 4RPSP+PS parallel manipulator (PM). Using the Euler–Lagrange method, a closed-form dynamic equation is derived for the 4RPSP+PS PM, and its power consumption is computed on the entire workspace. Then, a newly introduced optimization algorithm called multiobjective golden eagle optimizer is utilized to establish a Pareto front of optimal designs of the manipulator having a relatively larger workspace and lower power consumption. The results are verified through numerical examples.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Mohammed Obaid ◽  
Qianwei Zhang ◽  
Scott J. Adams ◽  
Reza Fotouhi ◽  
Haron Obaid

Abstract Background Telesonography systems have been developed to overcome barriers to accessing diagnostic ultrasound for patients in rural and remote communities. However, most previous telesonography systems have been designed for performing only abdominal and obstetrical exams. In this paper, we describe the development and assessment of a musculoskeletal (MSK) telesonography system. Methods We developed a 4-degrees-of-freedom (DOF) robot to manipulate an ultrasound probe. The robot was remotely controlled by a radiologist operating a joystick at the master site. The telesonography system was used to scan participants’ forearms, and all participants were conventionally scanned for comparison. Participants and radiologists were surveyed regarding their experience. Images from both scanning methods were independently assessed by an MSK radiologist. Results All ten ultrasound exams were successfully performed using our developed MSK telesonography system, with no significant delay in movement. The duration (mean ± standard deviation) of telerobotic and conventional exams was 4.6 ± 0.9 and 1.4 ± 0.5 min, respectively (p = 0.039). An MSK radiologist rated quality of real-time ultrasound images transmitted over an internet connection as “very good” for all telesonography exams, and participants rated communication with the radiologist as “very good” or “good” for all exams. Visualisation of anatomic structures was similar between telerobotic and conventional methods, with no statistically significant differences. Conclusions The MSK telesonography system developed in this study is feasible for performing soft tissue ultrasound exams. The advancement of this system may allow MSK ultrasound exams to be performed over long distances, increasing access to ultrasound for patients in rural and remote communities.


Sign in / Sign up

Export Citation Format

Share Document