Biochar and compost amendment impacts on soil water and pore size distribution of a loamy sand soil

Author(s):  
Alaa Ibrahim ◽  
Robert Horton
1994 ◽  
Vol 31 (4) ◽  
pp. 521-532 ◽  
Author(s):  
D.G. Fredlund ◽  
Anqing Xing

The soil-water characteristic curve can be used to estimate various parameters used to describe unsaturated soil behaviour. A general equation for the soil-water characteristic curve is proposed. A nonlinear, least-squares computer program is used to determine the best-fit parameters for experimental data presented in the literature. The equation is based on the assumption that the shape of the soil-water characteristic curve is dependent upon the pore-size distribution of the soil (i.e., the desaturation is a function of the pore-size distribution). The equation has the form of an integrated frequency distribution curve. The equation provides a good fit for sand, silt, and clay soils over the entire suction range from 0 to 106 kPa. Key words : soil-water characteristic curve, pore-size distribution, nonlinear curve fitting, soil suction, water content.


2013 ◽  
Vol 50 (4) ◽  
pp. 435-450 ◽  
Author(s):  
Christopher T.S. Beckett ◽  
Charles E. Augarde

Several models have been suggested to link a soil's pore-size distribution to its retention properties. This paper presents a method that builds on previous techniques by incorporating porosity and particles of different sizes, shapes, and separation distances to predict soil water retention properties. Mechanisms are suggested for the determination of both the main drying and wetting paths, which incorporate an adsorbed water phase and retention hysteresis. Predicted results are then compared with measured retention data to validate the model and to provide a foundation for discussing the validity and limitations of using pore-size distributions to predict retention properties.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 607
Author(s):  
Hesham M. Ibrahim ◽  
Abdulaziz G. Alghamdi

Limited water resources in arid and semi-arid regions require innovative management to maintain crop production while minimizing the amounts of water used for irrigation. We investigated the impact of the particle size of natural clinoptilolite zeolite (CZ) on water content (WC) and hydraulic properties of a loamy sand soil. WC was measured using 5TE sensors installed at five depths (10, 20, 30, 40, and 50 cm) in soil columns (7.4 cm ID, 56 cm length). Three sizes of macro- and nano-CZ particles (20, 2.0, and 0.2 µm) were added to the soil at an application rate of 1%. The columns were subject to 14 wetting/drying cycles from 24 February to 8 December 2020. The HYDRUS-1D model was used to simulate WC and soil water storage inside the soil columns. WC increased with the decreasing particle size of CZ, especially when columns were subject to long drying periods. The larger surface area and smaller pore size of CZ altered the pore-size distribution of the loamy sand soil and increased the amount of microporosity inside the soil system, leading to increased water retention. Available water and soil water storage were increased by 3.6–14.7% and 6.8–10.5%, respectively, with larger increases with the decrease in CZ particle size. Variations in infiltration rate and hydraulic conductivity were statistically significant only with the smallest CZ particle size, with a reduction of 25.6% and 19.3% compared to the control, respectively. The HYDRUS-1D model accurately simulated WC and soil water storage, with only slight overestimation of WC (2.4%) at depths ≤ 30 cm. The results suggest that, in light-textured soils, the application of CZ in the ultra-fine nanoparticle size would increase water-holding capacity and reduce hydraulic conductivity, which would enhance the efficiency of water use and contribute to water conservation in dry regions.


2021 ◽  
Vol 337 ◽  
pp. 02012
Author(s):  
Wei Yan ◽  
Emanuel Birle ◽  
Roberto Cudmani

The soil water characteristic curve (SWCC) of soils can be derived from the measured pore size distribution (PSD) data by applying capillary models. This method is limited for clayey soils due to the PSD changes during SWCC testing. In this study, a suction-dependent multimodal PSD model based on probability theory is developed and used to derive SWCC. The model is validated by simulating the drying branches of SWCCs of four compacted Lias Clay samples with different initial states. A good consistency between the measured and predicted SWCC is shown.


2015 ◽  
Vol 102 (1) ◽  
pp. 3-14 ◽  
Author(s):  
Virginijus Feiza ◽  
Dalia Feizienė ◽  
Aušra Sinkevičienė ◽  
Vaclovas Bogužas ◽  
Agnė Putramentaitė ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document