An enhanced authentication with key agreement scheme for satellite communication systems

2017 ◽  
Vol 36 (3) ◽  
pp. 296-304 ◽  
Author(s):  
Mingping Qi ◽  
Jianhua Chen
IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 46278-46287 ◽  
Author(s):  
Izwa Altaf ◽  
Muhammad Asad Saleem ◽  
Khalid Mahmood ◽  
Saru Kumari ◽  
Pradeep Chaudhary ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250205
Author(s):  
Yuanyuan Zhang ◽  
Zhibo Zhai

Satellite communication has played an important part in many different industries because of its advantages of wide coverage, strong disaster tolerance and high flexibility. The security of satellite communication systems has always been the concern of many scholars. Without authentication, user should not obtain his/her required services. Beyond that, the anonymity also needs to be protected during communications. In this study, we design an efficient and provably secure key agreement scheme for satellite communication systems. In each session, we replace user’s true identity by a temporary identity, which will be updated for each session, to guarantee the anonymity. Because the only use of lightweight algorithms, our proposed scheme has high performance. Furthermore, the security of the proposed scheme is proved in the real-or-random model and the performance analysis shows that the proposed scheme is more efficient than some other schemes for satellite communication systems.


Author(s):  
Teodor Narytnik ◽  
Vladimir Saiko

The technical aspects of the main promising projects in the segments of medium and low-orbit satellite communication systems are considered, as well as the project of the domestic low-orbit information and telecommunications system using the terahertz range, which is based on the use of satellite platforms of the micro- and nanosatellite class and the distribution of functional blocks of complex satellite payloads more high-end on multiple functionally related satellites. The proposed system of low-orbit satellite communications represents the groupings of low-orbit spacecraft (LEO-system) with the architecture of a "distributed satellite", which include the groupings of the root (leading) satellites and satellite repeaters (slaves). Root satellites are interconnected in a ring network by high-speed links between the satellites. The geometric size of the “distributed satellite” is the area around the root satellite with a radius of about 1 km. The combination of beams, which are formed by the repeater satellites, make up the service area of the LEO system. The requirements for the integrated service area of the LEO system (geographical service area) determine the requirements for the number of distributed satellites in the system as a whole. In the proposed system to reduce mutual interference between the grouping of the root (leading) satellites and repeater satellites (slaves) and, accordingly, minimizing distortions of the information signal when implementing inter-satellite communication, this line (radio channel) was created in an unlicensed frequency (e.g., in the terahertz 140 GHz) range. In addition, it additionally allows you to minimize the size of the antennas of such a broadband channel and simplify the operation of these satellite systems.


Sign in / Sign up

Export Citation Format

Share Document