Epitaxial growth of sub-nanometre thick tin dioxide films on sapphire substrates by pulsed atomic layer chemical vapour deposition

2004 ◽  
Vol 36 (8) ◽  
pp. 1133-1135 ◽  
Author(s):  
Toshio Takeuchi ◽  
Isao Doteshita ◽  
Seiji Asami
2001 ◽  
Vol 231 (1-2) ◽  
pp. 242-247 ◽  
Author(s):  
K. Shalini ◽  
Anil U. Mane ◽  
S.A. Shivashankar ◽  
M. Rajeswari ◽  
S. Choopun

Coatings ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 369 ◽  
Author(s):  
Richard Krumpolec ◽  
Tomáš Homola ◽  
David Cameron ◽  
Josef Humlíček ◽  
Ondřej Caha ◽  
...  

Sequentially pulsed chemical vapour deposition was used to successfully deposit thin nanocrystalline films of copper(I) chloride using an atomic layer deposition system in order to investigate their application to UV optoelectronics. The films were deposited at 125 °C using [Bis(trimethylsilyl)acetylene](hexafluoroacetylacetonato)copper(I) as a Cu precursor and pyridine hydrochloride as a new Cl precursor. The films were analysed by XRD, X-ray photoelectron spectroscopy (XPS), SEM, photoluminescence, and spectroscopic reflectance. Capping layers of aluminium oxide were deposited in situ by ALD (atomic layer deposition) to avoid environmental degradation. The film adopted a polycrystalline zinc blende-structure. The main contaminants were found to be organic materials from the precursor. Photoluminescence showed the characteristic free and bound exciton emissions from CuCl and the characteristic exciton absorption peaks could also be detected by reflectance measurements.


1992 ◽  
Vol 70 (10-11) ◽  
pp. 893-897
Author(s):  
C. Aktik ◽  
J. Beerens ◽  
S. Blain ◽  
A. Bsiesy

The low-pressure metal-organic chemical vapour deposition (LPMOCVD) technique has been investigated previously as a growth method for compound semiconductors, offering the possibility of selective epitaxy and the potential advantage of better controllability for changing the doping level and the alloy composition. Low-temperature growth is also desirable to reduce the carbon incorporation generated by the decomposition of the organic radicals. In this article we report for the first time the epitaxial growth of gallium arsenide (GaAs) by LPMOCVD at temperatures as low as 510 °C. The vertical reactor that was developed by the authors employs conventional precursors such as trimethylgallium and arsine. By carefully choosing the growth parameters, we were able to grow high-quality GaAs epilayers with good surface morphology at temperatures as low as 510 °C. The carbon incorporation is shown to decrease with decreasing growth temperature without deterioration of the film quality. By carefully controlling the purity of the sources and the gas flow dynamics, we reduced the deep level impurity concentration and obtained reproducible n-type material with residual net donor concentration of 4.4 × 1014 cm−3 and mobility of 92 000 cm2 V−1 s−1 at 77 K.


2020 ◽  
Author(s):  
Matthew Griffiths ◽  
Zachary Dubrawski ◽  
Peter Gordon ◽  
Marcel Junige ◽  
Sean Barry

A survey of known gold-containing chemical vapour deposition (CVD) and atomic layer deposition (ALD) precursors, with a focus on collecting their volatilization and decomposition data. These data were applied to a figure of merit (σ) developed to easily assess the thermal characteristics.


Sign in / Sign up

Export Citation Format

Share Document