Chemoselective Detection of 2,4,6‐trinitrophenol by Ground State Adduct Formation via Protonation of Quinoline Moiety of Non‐heme Ligands with Structural Evidence

2020 ◽  
Vol 5 (28) ◽  
pp. 8447-8454
Author(s):  
Sarvesh S. Harmalkar ◽  
Ankita V. Naik ◽  
Madhuri K. Nilajakar ◽  
Sunder N. Dhuri

1991 ◽  
Vol 69 (7) ◽  
pp. 1171-1181 ◽  
Author(s):  
David J. Hastings ◽  
Alan C. Weedon

The stereochemistries of the 2 + 2 cycloaddition products obtained from the photochemical addition reaction between N-benzoylindole or N-carboethoxyindole and the alkenes cyclopentene, cyclohexene, cycloheptene, cis- and trans-2-butene, and cis- and trans-4-octene are examined. The structures of the products are shown to be consistent with a photo-cycloaddition mechanism involving the intermediacy of triplet 1,4-biradical species. The quantum yields of adduct formation between N-benzoylindole and both cis- and trans-octene were measured as a function of alkene concentration. The results suggest that cis-octene reacts with the indole derivative's triplet excited state with a rate constant of (1.7 ± 0.3) × 107 M−1 s−1. The results are also consistent with the immediate products of this reaction being 1,4-biradicals, 98% of which revert to the ground state indole derivative and alkene, and only 2% of which proceed to cycloadduct. In marked contrast, the same treatment suggests that trans-octene reacts with the triplet excited state of N-benzoylindole with a rate constant estimated to be in the range of 1 × 106 and 6 × 105 M−1 s−1, and it appears that the 1,4-biradicals formed revert much less efficiently to the starting materials; it is estimated that between 67 and 100% of the 1,4-biradicals proceed to cycloadducts. In the reaction with cis-octene biradical reversion leads to the formation of trans-octene ("Schenk isomerization"); the quantum yield of this process is determined to be 0.074 ± 0.004, which may imply that approximately 75% of the biradicals collapse to cis-alkene and 25% collapse to the trans isomer. Key words: indole, photocycloaddition, 1,4-biradicals.



Author(s):  
Ben O. Spurlock ◽  
Milton J. Cormier

The phenomenon of bioluminescence has fascinated layman and scientist alike for many centuries. During the eighteenth and nineteenth centuries a number of observations were reported on the physiology of bioluminescence in Renilla, the common sea pansy. More recently biochemists have directed their attention to the molecular basis of luminosity in this colonial form. These studies have centered primarily on defining the chemical basis for bioluminescence and its control. It is now established that bioluminescence in Renilla arises due to the luciferase-catalyzed oxidation of luciferin. This results in the creation of a product (oxyluciferin) in an electronic excited state. The transition of oxyluciferin from its excited state to the ground state leads to light emission.











1994 ◽  
Vol 4 (9) ◽  
pp. 1281-1285 ◽  
Author(s):  
P. Sutton ◽  
D. L. Hunter ◽  
N. Jan


1996 ◽  
Vol 6 (9) ◽  
pp. 1167-1180 ◽  
Author(s):  
A. Gicquel ◽  
M. Chenevier ◽  
Y. Breton ◽  
M. Petiau ◽  
J. P. Booth ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document