Personalized Cancer Immunotherapy via Transporting Endogenous Tumor Antigens to Lymph Nodes Mediated by Nano Fe3 O4

Small ◽  
2018 ◽  
Vol 14 (38) ◽  
pp. 1801372 ◽  
Author(s):  
Binghua Wang ◽  
Jingyi An ◽  
Huifang Zhang ◽  
Shudong Zhang ◽  
Huijuan Zhang ◽  
...  
Small ◽  
2018 ◽  
Vol 14 (38) ◽  
pp. 1870173 ◽  
Author(s):  
Binghua Wang ◽  
Jingyi An ◽  
Huifang Zhang ◽  
Shudong Zhang ◽  
Huijuan Zhang ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1700
Author(s):  
In-Cheol Sun ◽  
SeongHoon Jo ◽  
Diego Dumani ◽  
Wan Su Yun ◽  
Hong Yeol Yoon ◽  
...  

Lymph node mapping is important in cancer immunotherapy because the morphology of lymph nodes is one of the crucial evaluation criteria of immune responses. We developed new theragnostic glycol-chitosan-coated gold nanoparticles (GC-AuNPs), which highlighted lymph nodes in ultrasound-guided photoacoustic (US/PA) imaging. Moreover, the ovalbumin epitope was conjugated GC-AuNPs (OVA-GC-AuNPs) for delivering tumor antigen to lymph node resident macrophage. In vitro studies proved the vigorous endocytosis activity of J774A.1 macrophage and consequent strong photoacoustic signals from them. The macrophages also presented a tumor antigen when OVA-GC-AuNPs were used for cellular uptake. After the lingual injection of GC-AuNPs into healthy mice, cervical lymph nodes were visible in a US/PA imaging system with high contrast. Three-dimensional analysis of lymph nodes revealed that the accumulation of GC-AuNPs in the lymph node increased as the post-injection time passed. Histological analysis showed GC-AuNPs or OVA-GC-AuNPs located in subcapsular and medullar sinuses where macrophages are abundant. Our new theragnostic GC-AuNPs present a superior performance in US/PA imaging of lymph nodes without targeting moieties or complex surface modification. Simultaneously, GC-AuNPs were able to deliver tumor antigens to cause macrophages to present the OVA epitope at targeted lymph nodes, which would be valuable for cancer immunotherapy.


2017 ◽  
Author(s):  
Alexander Rubinsteyn ◽  
Isaac Hodes ◽  
Julia Kodysh ◽  
Jeffrey Hammerbacher

AbstractTherapeutic vaccines targeting mutant tumor antigens (“neoantigens”) are an increasingly popular form of personalized cancer immunotherapy. Vaxrank is a computational tool for selecting neoantigen vaccine peptides from tumor mutations, tumor RNA data, and patient HLA type. Vaxrank is freely available at www.github.com/openvax/vaxrank under the Apache 2.0 open source license and can also be installed from the Python Package Index.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Manlio Fusciello ◽  
Flavia Fontana ◽  
Siri Tähtinen ◽  
Cristian Capasso ◽  
Sara Feola ◽  
...  

AbstractVirus-based cancer vaccines are nowadays considered an interesting approach in the field of cancer immunotherapy, despite the observation that the majority of the immune responses they elicit are against the virus and not against the tumor. In contrast, targeting tumor associated antigens is effective, however the identification of these antigens remains challenging. Here, we describe ExtraCRAd, a multi-vaccination strategy focused on an oncolytic virus artificially wrapped with tumor cancer membranes carrying tumor antigens. We demonstrate that ExtraCRAd displays increased infectivity and oncolytic effect in vitro and in vivo. We show that this nanoparticle platform controls the growth of aggressive melanoma and lung tumors in vivo both in preventive and therapeutic setting, creating a highly specific anti-cancer immune response. In conclusion, ExtraCRAd might serve as the next generation of personalized cancer vaccines with enhanced features over standard vaccination regimens, representing an alternative way to target cancer.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3596
Author(s):  
Reza Bayat Mokhtari ◽  
Manpreet Sambi ◽  
Bessi Qorri ◽  
Narges Baluch ◽  
Neda Ashayeri ◽  
...  

Cancer immunotherapy harnesses the immune system by targeting tumor cells that express antigens recognized by immune system cells, thus leading to tumor rejection. These tumor-associated antigens include tumor-specific shared antigens, differentiation antigens, protein products of mutated genes and rearrangements unique to tumor cells, overexpressed tissue-specific antigens, and exogenous viral proteins. However, the development of effective therapeutic approaches has proven difficult, mainly because these tumor antigens are shielded, and cells primarily express self-derived antigens. Despite innovative and notable advances in immunotherapy, challenges associated with variable patient response rates and efficacy on select tumors minimize the overall effectiveness of immunotherapy. Variations observed in response rates to immunotherapy are due to multiple factors, including adaptative resistance, competency, and a diversity of individual immune systems, including cancer stem cells in the tumor microenvironment, composition of the gut microbiota, and broad limitations of current immunotherapeutic approaches. New approaches are positioned to improve the immune response and increase the efficacy of immunotherapies, highlighting the challenges that the current global COVID-19 pandemic places on the present state of immunotherapy.


2016 ◽  
Vol 8 (1) ◽  
pp. 1 ◽  
Author(s):  
Anna Meiliana ◽  
Nurrani Mustika Dewi ◽  
Andi Wijaya

BACKGROUND: The goals of treating patients with cancer are to cure the disease, prolong survival, and improve quality of life. Immune cells in the tumor microenvironment have an important role in regulating tumor progression. Therefore, stimulating immune reactions to tumors can be an attractive therapeutic and prevention strategy.CONTENT: During immune surveillance, the host provides defense against foreign antigens, while ensuring it limits activation against self antigens. By targeting surface antigens expressed on tumor cells, monoclonal antibodies have demonstrated efficacy as cancer therapeutics. Recent successful antibody-based strategies have focused on enhancing antitumor immune responses by targeting immune cells, irrespective of tumor antigens. The use of antibodies to block pathways inhibiting the endogenous immune response to cancer, known as checkpoint blockade therapy, has stirred up a great deal of excitement among scientists, physicians, and patients alike. Clinical trials evaluating the safety and efficacy of antibodies that block the T cell inhibitory molecules cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death 1 (PD-1) have reported success in treating subsets of patients. Adoptive cell transfer (ACT) is a highly personalized cancer therapy that involve administration to the cancer-bearing host of immune cells with direct anticancer activity. In addition, the ability to genetically engineer lymphocytes to express conventional T cell receptors or chimeric antigen receptors has further extended the successful application of ACT for cancer treatment.SUMMARY: For cancer treatment, 2011 marked the beginning of a new era. The underlying basis of cancer immunotherapy is to activate a patient’s own T cells so that they can kill their tumors. Reports of amazing recoveries abound, where patients remain cancer-free many years after receiving the therapy. The idea of harnessing immune cells to fight cancer is not new, but only recently have scientists amassed enough clinical data to demonstrate what a game-changer cancer immunotherapy can be. This field is no stranger to obstacles, so the future looks very promising indeed.KEYWORDS: immune checkpoint, adoptive cell transfer, neoantigen, monoclonal antibody


Author(s):  
Karishma Rajani ◽  
Vanessa Alonso-Camino ◽  
Nicolas Boisgerault ◽  
Richard Vile

2020 ◽  
Vol 6 (12) ◽  
pp. eaaw6071 ◽  
Author(s):  
Qianqian Ni ◽  
Fuwu Zhang ◽  
Yijing Liu ◽  
Zhantong Wang ◽  
Guocan Yu ◽  
...  

Neoantigen vaccines have been enthusiastically pursued for personalized cancer immunotherapy while vast majority of neoantigens have no or low immunogenicity. Here, a bi-adjuvant neoantigen nanovaccine (banNV) that codelivered a peptide neoantigen (Adpgk) with two adjuvants [Toll-like receptor (TLR) 7/8 agonist R848 and TLR9 agonist CpG] was developed for potent cancer immunotherapy. Specifically, banNVs were prepared by a nanotemplated synthesis of concatemer CpG, nanocondensation with cationic polypeptides, and then physical loading with hydrophobic R848 and Adpgk. The immunogenicity of the neoantigen was profoundly potentiated by efficient codelivery of neoantigen and dual synergistic adjuvants, which is accompanied by reduced acute systemic toxicity. BanNVs sensitized immune checkpoint programmed death receptor 1 (PD-1) on T cells, therefore, a combination of banNVs with aPD-1 conspicuously induced the therapy response and led to complete regression of 70% neoantigen-specific tumors without recurrence. We conclude that banNVs are promising to optimize personalized therapeutic neoantigen vaccines for cancer immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document