Maltase Decorated by Chiral Carbon Dots with Inhibited Enzyme Activity for Glucose Level Control

Small ◽  
2019 ◽  
Vol 15 (48) ◽  
pp. 1901512 ◽  
Author(s):  
Mengling Zhang ◽  
Huibo Wang ◽  
Bo Wang ◽  
Yurong Ma ◽  
Hui Huang ◽  
...  
Nanoscale ◽  
2021 ◽  
Author(s):  
Lorenzo Branzi ◽  
Giacomo Lucchini ◽  
Elti Cattaruzza ◽  
Nicola Pinna ◽  
Alvise Benedetti ◽  
...  

We report on a Cu(II) catalyzed process for the production of cysteine based chiral carbon dots, the process does not require any thermal treatment and the carbon dots formation is...


Parasitology ◽  
1973 ◽  
Vol 67 (2) ◽  
pp. 197-204 ◽  
Author(s):  
Madan M. Goil

Biochemical studies on the non-specific phosphomonoesterases have demonstrated the presence of acid phosphomonoesterase with maximum activity at pH 4·0 in Gastrodiscus aegyptiacus (enzyme I) and at pH 4·5 in the case of Fasdolopsis buski (enzyme II). The Km for ρ-nitrophenyl phosphate hydrolysis was 0·66 mM for enzyme I and 1·1 mM for enzyme II. Different concentrations of fluoride, arsenate, tartrate, tartaric acid, cysteine and copper brought about inhibition of both enzymes and magnesium, iodoaeetate, iodoacetamide and EDTA had no influence on either enzyme activity. Cobalt activated both enzymes while zinc inhibited enzyme I and strongly stimulated enzyme II.


1985 ◽  
Vol 248 (1) ◽  
pp. E1-E9 ◽  
Author(s):  
J. D. Robishaw ◽  
J. R. Neely

The metabolism of coenzyme A and control of its synthesis are reviewed. Pantothenate kinase is an important rate-controlling enzyme in the synthetic pathway of all tissues studied and appears to catalyze the flux-generating reaction of the pathway in cardiac muscle. This enzyme is strongly inhibited by coenzyme A and all of its acyl esters. The cytosolic concentrations of coenzyme A and acetyl coenzyme A in both liver and heart are high enough to totally inhibit pantothenate kinase under all conditions. Free carnitine, but not acetyl carnitine, deinhibits the coenzyme A-inhibited enzyme. Carnitine alone does not increase enzyme activity. Thus changes in the acetyl carnitine-to-carnitine ratio that occur with nutritional states provides a mechanism for regulation of coenzyme A synthetic rates. Changes in the rate of coenzyme A synthesis in liver and heart occurs with fasting, refeeding, and diabetes and in heart muscle with hypertrophy. The pathway and regulation of coenzyme A degradation are not understood.


Author(s):  
Pengli Gao ◽  
Shuang Chen ◽  
Shi Liu ◽  
Hongxin Liu ◽  
Zhigang Xie ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (53) ◽  
pp. 32202-32210
Author(s):  
Florence Victoria ◽  
John Manioudakis ◽  
Liana Zaroubi ◽  
Brandon Findlay ◽  
Rafik Naccache

Chiral carbon dots, prepared from the unnatural d-enantiomer of cysteine, inhibit the growth of Escherichia coli ATCC 25922 and MG1655 at a lower concentration than l-carbon dots, prepared from the l-enantiomer.


2020 ◽  
Vol 20 (08) ◽  
pp. 2050055
Author(s):  
URSULE ESSAMBA MAH ◽  
PAUL WOAFO

This paper deals with the numerical simulation of a model of blood glucose level control of a diabetic person using an electrodynamic transducer. Two mathematical models describing the dynamics of the couple glucose–insulin are used: the Bergman’s and the Cheng’s models. First, the adaptive control is applied on the dynamics of a reservoir opener by an electrodynamic transducer. Then it is applied on the two models of the glucose–insulin dynamics. It is found that the control of the reservoir opener and that of the glycemia of a diabetic patient are efficient for some values of the control parameters.


2000 ◽  
Vol 350 (3) ◽  
pp. 671-676 ◽  
Author(s):  
Zhen-Zhong ZHANG ◽  
Satoru NIRASAWA ◽  
Yoshiaki NAKAJIMA ◽  
Michiteru YOSHIDA ◽  
Kiyoshi HAYASHI

An aminopeptidase from Vibrio proteolyticus was translated as a preproprotein consisting of four domains: a signal peptide, an N-terminal propeptide, a mature region and a C-terminal propeptide. Protein expression and analysis of the activity results demonstrated that the N-terminal propeptide was essential to the formation of the active enzyme in Escherichia coli. Urea dissolution of inclusion bodies and dialysis indicated that the N-terminal propeptide could facilitate the correct folding of the enzyme in vitro. Using l-Leu-p-nitroanilide as the substrate, the kinetic parameters (kcat and Km) of the pro-aminopeptidase and processed aminopeptidases were analysed. The results suggested that the N-terminal propeptide inhibited enzyme activity of the mature region. In contrast, the C-terminal propeptide did not show evidence of forming an active enzyme, of correctly folding in vitro or of inhibiting the active region.


Sign in / Sign up

Export Citation Format

Share Document