MXene‐Sponge Based High‐Performance Piezoresistive Sensor for Wearable Biomonitoring and Real‐Time Tactile Sensing

Small Methods ◽  
2021 ◽  
pp. 2101051
Author(s):  
Qikun Wei ◽  
Guorui Chen ◽  
Hong Pan ◽  
Zongbiao Ye ◽  
Christian Au ◽  
...  
Author(s):  
Muhammad Faris Roslan ◽  
◽  
Afandi Ahmad ◽  
Abbes Amira ◽  
◽  
...  

Nano Energy ◽  
2021 ◽  
pp. 106151
Author(s):  
Tuoyi Su ◽  
Nishuang Liu ◽  
Yihua Gao ◽  
Dandan Lei ◽  
Luoxin Wang ◽  
...  

Author(s):  
Yuchen Luo ◽  
Yi Zhang ◽  
Ming Liu ◽  
Yihong Lai ◽  
Panpan Liu ◽  
...  

Abstract Background and aims Improving the rate of polyp detection is an important measure to prevent colorectal cancer (CRC). Real-time automatic polyp detection systems, through deep learning methods, can learn and perform specific endoscopic tasks previously performed by endoscopists. The purpose of this study was to explore whether a high-performance, real-time automatic polyp detection system could improve the polyp detection rate (PDR) in the actual clinical environment. Methods The selected patients underwent same-day, back-to-back colonoscopies in a random order, with either traditional colonoscopy or artificial intelligence (AI)-assisted colonoscopy performed first by different experienced endoscopists (> 3000 colonoscopies). The primary outcome was the PDR. It was registered with clinicaltrials.gov. (NCT047126265). Results In this study, we randomized 150 patients. The AI system significantly increased the PDR (34.0% vs 38.7%, p < 0.001). In addition, AI-assisted colonoscopy increased the detection of polyps smaller than 6 mm (69 vs 91, p < 0.001), but no difference was found with regard to larger lesions. Conclusions A real-time automatic polyp detection system can increase the PDR, primarily for diminutive polyps. However, a larger sample size is still needed in the follow-up study to further verify this conclusion. Trial Registration clinicaltrials.gov Identifier: NCT047126265


2001 ◽  
Vol 7 (S2) ◽  
pp. 1050-1051 ◽  
Author(s):  
S.W. Nam ◽  
D.A. Wollman ◽  
Dale E. Newbury ◽  
G.C. Hilton ◽  
K.D. Irwin ◽  
...  

The high performance of single-pixel microcalorimeter EDS (μ,cal EDS) has been shown to be very useful for a variety of microanalysis cases. The primary advantage of jxcal EDS over conventional EDS is the factor of 25 improvement in energy resolution (∽3 eV in real-time). This level of energy resolution is particularly important for applications such as nanoscale contaminant analysis where it is necessary to resolve peak overlaps at low x-ray energies. Because μcal EDS offers practical solutions to many microanalysis problems, several companies are proceeding with commercialization of single-pixel μal EDS technology. Two drawbacks limiting the application of uxal EDS are its low count rate (∽500 s−1) and small area (∽0.04 mm for a bare single pixel, ∽5 mm2 with a polycapillary optic). We are developing a 32x32 pixel array with a total area of 40 mm2 and with a total count rate between 105 s−1 and 106 s−1.


Author(s):  
Jop Vermeer ◽  
Leonardo Scandolo ◽  
Elmar Eisemann

Ambient occlusion (AO) is a popular rendering technique that enhances depth perception and realism by darkening locations that are less exposed to ambient light (e.g., corners and creases). In real-time applications, screen-space variants, relying on the depth buffer, are used due to their high performance and good visual quality. However, these only take visible surfaces into account, resulting in inconsistencies, especially during motion. Stochastic-Depth Ambient Occlusion is a novel AO algorithm that accounts for occluded geometry by relying on a stochastic depth map, capturing multiple scene layers per pixel at random. Hereby, we efficiently gather missing information in order to improve upon the accuracy and spatial stability of conventional screen-space approximations, while maintaining real-time performance. Our approach integrates well into existing rendering pipelines and improves the robustness of many different AO techniques, including multi-view solutions.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 627
Author(s):  
David Marquez-Viloria ◽  
Luis Castano-Londono ◽  
Neil Guerrero-Gonzalez

A methodology for scalable and concurrent real-time implementation of highly recurrent algorithms is presented and experimentally validated using the AWS-FPGA. This paper presents a parallel implementation of a KNN algorithm focused on the m-QAM demodulators using high-level synthesis for fast prototyping, parameterization, and scalability of the design. The proposed design shows the successful implementation of the KNN algorithm for interchannel interference mitigation in a 3 × 16 Gbaud 16-QAM Nyquist WDM system. Additionally, we present a modified version of the KNN algorithm in which comparisons among data symbols are reduced by identifying the closest neighbor using the rule of the 8-connected clusters used for image processing. Real-time implementation of the modified KNN on a Xilinx Virtex UltraScale+ VU9P AWS-FPGA board was compared with the results obtained in previous work using the same data from the same experimental setup but offline DSP using Matlab. The results show that the difference is negligible below FEC limit. Additionally, the modified KNN shows a reduction of operations from 43 percent to 75 percent, depending on the symbol’s position in the constellation, achieving a reduction 47.25% reduction in total computational time for 100 K input symbols processed on 20 parallel cores compared to the KNN algorithm.


2020 ◽  
Vol 8 (39) ◽  
pp. 13762-13769
Author(s):  
Jing-Wei Kang ◽  
Chao Zhang ◽  
Kai-Jun Cao ◽  
Yu Lu ◽  
Chun-Yan Wu ◽  
...  

A high-performance γ-In2Se3/GaAs heterostructure-based photodetector linear array shows potential in optoelectronic applications such as real-time light trajectory tracking and image sensing.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 943 ◽  
Author(s):  
Il Bae ◽  
Jaeyoung Moon ◽  
Jeongseok Seo

The convergence of mechanical, electrical, and advanced ICT technologies, driven by artificial intelligence and 5G vehicle-to-everything (5G-V2X) connectivity, will help to develop high-performance autonomous driving vehicles and services that are usable and convenient for self-driving passengers. Despite widespread research on self-driving, user acceptance remains an essential part of successful market penetration; this forms the motivation behind studies on human factors associated with autonomous shuttle services. We address this by providing a comfortable driving experience while not compromising safety. We focus on the accelerations and jerks of vehicles to reduce the risk of motion sickness and to improve the driving experience for passengers. Furthermore, this study proposes a time-optimal velocity planning method for guaranteeing comfort criteria when an explicit reference path is given. The overall controller and planning method were verified using real-time, software-in-the-loop (SIL) environments for a real-time vehicle dynamics simulation; the performance was then compared with a typical planning approach. The proposed optimized planning shows a relatively better performance and enables a comfortable passenger experience in a self-driving shuttle bus according to the recommended criteria.


Sign in / Sign up

Export Citation Format

Share Document