Nonhalogenated Solvent‐Processed Thick‐Film Ternary Nonfullerene Organic Solar Cells with Power Conversion Efficiency >13% Enabled by a New Wide‐Bandgap Polymer

Solar RRL ◽  
2021 ◽  
pp. 2000787
Author(s):  
Thavamani Gokulnath ◽  
Saripally Sudhaker Reddy ◽  
Ho-Yeol Park ◽  
Junyoung Kim ◽  
Jehan Kim ◽  
...  
2019 ◽  
Vol 16 (3) ◽  
pp. 236-243 ◽  
Author(s):  
Hui Zhang ◽  
Yibing Ma ◽  
Youyi Sun ◽  
Jialei Liu ◽  
Yaqing Liu ◽  
...  

In this review, small-molecule donors for application in organic solar cells reported in the last three years are highlighted. Especially, the effect of donor molecular structure on power conversion efficiency of organic solar cells is reported in detail. Furthermore, the mechanism is proposed and discussed for explaining the relationship between structure and power conversion efficiency. These results and discussions draw some rules for rational donor molecular design, which is very important for further improving the power conversion efficiency of organic solar cells based on the small-molecule donor.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhenrong Jia ◽  
Shucheng Qin ◽  
Lei Meng ◽  
Qing Ma ◽  
Indunil Angunawela ◽  
...  

AbstractTandem organic solar cells are based on the device structure monolithically connecting two solar cells to broaden overall absorption spectrum and utilize the photon energy more efficiently. Herein, we demonstrate a simple strategy of inserting a double bond between the central core and end groups of the small molecule acceptor Y6 to extend its conjugation length and absorption range. As a result, a new narrow bandgap acceptor BTPV-4F was synthesized with an optical bandgap of 1.21 eV. The single-junction devices based on BTPV-4F as acceptor achieved a power conversion efficiency of over 13.4% with a high short-circuit current density of 28.9 mA cm−2. With adopting BTPV-4F as the rear cell acceptor material, the resulting tandem devices reached a high power conversion efficiency of over 16.4% with good photostability. The results indicate that BTPV-4F is an efficient infrared-absorbing narrow bandgap acceptor and has great potential to be applied into tandem organic solar cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Wageh ◽  
Mahfoudh Raïssi ◽  
Thomas Berthelot ◽  
Matthieu Laurent ◽  
Didier Rousseau ◽  
...  

AbstractPoly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) mixed with single-wall nanotubes (SWNTs) (10:1) and doped with (0.1 M) perchloric acid (HClO4) in a solution-processed film, working as an excellent thin transparent conducting film (TCF) in organic solar cells, was investigated. This new electrode structure can be an outstanding substitute for conventional indium tin oxide (ITO) for applications in flexible solar cells due to the potential of attaining high transparency with enhanced conductivity, good flexibility, and good durability via a low-cost process over a large area. In addition, solution-processed vanadium oxide (VOx) doped with a small amount of PEDOT-PSS(PH1000) can be applied as a hole transport layer (HTL) for achieving high efficiency and stability. From these viewpoints, we investigate the benefit of using printed SWNTs-PEDOT-PSS doped with HClO4 as a transparent conducting electrode in a flexible organic solar cell. Additionally, we applied a VOx-PEDOT-PSS thin film as a hole transporting layer and a blend of PTB7 (polythieno[3,4-b] thiophene/benzodithiophene): PC71BM (phenyl-C71-butyric acid methyl ester) as an active layer in devices. Zinc oxide (ZnO) nanoparticles were applied as an electron transport layer and Ag was used as the top electrode. The proposed solar cell structure showed an enhancement in short-circuit current, power conversion efficiency, and stability relative to a conventional cell based on ITO. This result suggests a great carrier injection throughout the interfacial layer, high conductivity and transparency, as well as firm adherence for the new electrode.


Author(s):  
Minkyu Kyeong ◽  
Jinho Lee ◽  
Matyas Daboczi ◽  
Katherine Stewart ◽  
Huifeng Yao ◽  
...  

Functionalized polyethyleneimines that are compatible with non-fullerene acceptors have been developed by protecting the reactive amine groups, leading to non-fullerene solar cells with high power conversion efficiency and enhanced thermal stability.


1981 ◽  
Vol 59 (6) ◽  
pp. 727-732 ◽  
Author(s):  
Rafik O. Loutfy ◽  
Cheng-Kuo Hsiao

The effect of temperature on the photovoltaic properties of indium/metal-free phthalocyanine Schottky barrier solar cells was investigated in the range 260–350 K. In general, the short circuit photocurrent, Jsc, and fill factor, ff, increased with increasing temperature (in contrast to inorganic photocells). The device series resistance and open circuit photovoltage, Voc, decreased (similar to inorganic photocells) as temperature was raised. An increase in the overall power conversion efficiency, η, has been observed with increase of temperature. In the case of x-H2Pc, the power conversion efficiency increased by 2.5 times due to a temperature rise of 60 °C above ambient. Thus, for operation at temperatures above ambient, organic solar cells may offer a significant advantage over inorganic cells.Analysis of the variation of the photovoltage with temperature showed that the decrease in Voc is mainly due to variation injunction impedance, which is controlled by thermionic current at high temperature and ionized impurity at low temperature.


Author(s):  
Rui He ◽  
Shengqiang Ren ◽  
Cong Chen ◽  
Zongjin Yi ◽  
Yi Luo ◽  
...  

The past decade has witnessed rapid development of perovskite solar cells (PSCs), the record power conversion efficiency (PCE) of which has been rapidly boosted from the initial 3.8% to a...


Sign in / Sign up

Export Citation Format

Share Document