Experimental investigation of small-scaled model for powerhouse dam section on shaking table

2012 ◽  
Vol 20 (5) ◽  
pp. 740-752 ◽  
Author(s):  
Jianyun Chen ◽  
Mingming Wang ◽  
Shuli Fan
2019 ◽  
Vol 11 (2) ◽  
pp. 168781401982995 ◽  
Author(s):  
Mingming Wang ◽  
Jianyun Chen ◽  
Hai Wei ◽  
Bingyue Song

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Xiaojun Li ◽  
Chenning Song ◽  
Guoliang Zhou ◽  
Chao Wei ◽  
Ming Lu

Water tank is one important component of passive containment cooling system (PCS) of nuclear island building. The sloshing frequency of water is much less than structure frequency and large-amplitude sloshing occurs easily when subjected to seismic loadings. Therefore, the sloshing dynamics and fluid-structure interaction (FSI) effect of water tank should be considered when the dynamic response of nuclear island building is analyzed. A 1/16 scaled model was designed and the shaking table test was done, in which the hydrodynamic pressure time histories and attenuation data of wave height were recorded. Then the sloshing frequencies and 1st sloshing damping ratio were recognized. Moreover, modal analysis and time history analysis of numerical model were done by ADINA software. By comparing the sloshing frequencies and hydrodynamic pressures, it is proved that the test method is reasonable and the formulation of potential-based fluid elements (PBFE) can be used to simulate FSI effect of nuclear island building.


2014 ◽  
Vol 11 (4) ◽  
pp. 357-364
Author(s):  
Hui Su ◽  
Jian Wang ◽  
Xinpei Jiang ◽  
Yang Tan

Based on the shake table test on "tie column-ring beam-cast-in-place slab" construction waste recycled brick masonry structure, a 1/3 scaled model of 4 stories is tested to analyze the seismic behavior of the multi-storey masonry structure. The test is conducted with EL-Centro seismic wave, Taft wave and artificial wave to simulate the damages observed and the seismic response under different earthquake levels. On the basis of test results, the seismic performance of the model is good and the overall structure could satisfy seismic fortification requirements in the region of intensity 8. At the same time, there was no obvious difference between this masonry structure and recycled aggregate concrete block masonry structure. The lintel of the door and window damage seriously. The base damages more easily than the superstructure. Masonry structure with construction waste recycled brick can satisfy the requirement of the masonry structure buildings in eight degree of aseismatic design area.


2010 ◽  
Vol 163-167 ◽  
pp. 1281-1285
Author(s):  
Bin Wang ◽  
Huan Jun Jiang ◽  
Jian Bao Li ◽  
Wen Sheng Lu ◽  
Xi Lin Lu

The reinforced concrete (RC) frame-tube structure considered in the study has two towers with lapping transfer columns. The lapping transfer columns, considering aesthetic requirement in elevation, lead to a complex vertical force transfer system. The large irregularity in elevation, according to Chinese code, necessitates a detailed study. A 1/15-scaled model of the high-rise building was tested on a shaking table to evaluate its seismic performance. The model was subjected to earthquake inputs representing frequent, basic, rare, and extremly rare earthquakes. The results of shaking table test in terms of the global and local responses as well as the dynamic properties are presented. The tests demonstrate that the designed structural system satisfies the pre-defined performance objectives and the lapping transfer columns have good seismic peformance. To better control seismic damages of the building, some suggestions for improving the design of this structure are also put forward at last.


2012 ◽  
Vol 11 (4) ◽  
pp. 1157-1190 ◽  
Author(s):  
Paulo B. Lourenço ◽  
Leonardo Avila ◽  
Graça Vasconcelos ◽  
J.Pedro Pedro Alves ◽  
Nuno Mendes ◽  
...  

2021 ◽  
Author(s):  
N. Bianchini ◽  
N. Mendes ◽  
P. Candeias ◽  
M. Rossi ◽  
C. Calderini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document