Experimental study and numerical simulation on a new type of viscoelastic damper with strong nonlinear characteristics

2016 ◽  
Vol 24 (4) ◽  
pp. e1897 ◽  
Author(s):  
Shunming Gong ◽  
Ying Zhou
Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 748
Author(s):  
Xiaoyan Bian ◽  
Yao Zhang ◽  
Qibin Zhou ◽  
Ting Cao ◽  
Bengang Wei

Building Integrated Photovoltaic (BIPV) modules are a new type of photovoltaic (PV) modules that are widely used in distributed PV stations on the roof of buildings for power generation. Due to the high installation location, BIPV modules suffer from lightning hazard greatly. In order to evaluate the risk of lightning stroke and consequent damage to BIPV modules, the studies on the lightning attachment characteristics and the lightning energy withstand capability are conducted, respectively, based on numerical and experimental methods in this paper. In the study of lightning attachment characteristics, the numerical simulation results show that it is easier for the charges to concentrate on the upper edge of the BIPV metal frame. Therefore, the electric field strength at the upper edge is enhanced to emit upward leaders and attract the lightning downward leaders. The conclusion is verified through the long-gap discharge experiment in a high voltage lab. From the experimental study of multi-discharge in the lab, it is found that the lightning interception efficiency of the BIPV module is improved by 114% compared with the traditional PV modules. In the study of lightning energy withstand capability, a thermoelectric coupling model is established. With this model, the potential, current and temperature can be calculated in the multi-physical field numerical simulation. The results show that the maximum temperature of the metal frame increases by 16.07 °C when 100 kA lightning current flows through it and does not bring any damage to the PV modules. The numerical results have a good consistency with the experimental study results obtained from the 100 kA impulse current experiment in the lab.


2021 ◽  
Vol 201 ◽  
pp. 108436
Author(s):  
Daode Hua ◽  
Pengcheng Liu ◽  
Peng Liu ◽  
Changfeng Xi ◽  
Shengfei Zhang ◽  
...  

2021 ◽  
Vol 36 (1) ◽  
pp. 67-77
Author(s):  
Yue Wu ◽  
Junkai Huang ◽  
Jiafeng Chen

The long-span ice composite shell structure is a new type of ice and snow structure developed in recent years. The engineering practice of ice composite shell shows that sublimation is one of the important reasons for its damage and even collapse. In this paper, we firstly supplemented the existing H-K equation and obtained the revised ice sublimation equation through indoor evaporative plate experiment considering the influence of admixtures and wind speed. Afterwards, combining the simulations of solar radiation and CFD, the numerical simulation of sublimation distribution on the surface of were realized by programming in Grasshopper platform. During sublimation, the thickness of the ice composite shell decreases by 0.38 mm every 10 days and the sublimation rate on the sunny side was 1.7 times that on the shady side. Finally, the static performance and stability of the sublimated ice composite spherical shell were analyzed. After 70 days of sublimation, the thickness of the ice composite shell structure becomes thinner and uneven, which leads its sensitivity to external load increases.


Author(s):  
Chunhai Guo ◽  
Bin Wang ◽  
Zhenya Kang ◽  
Wenwu Zhang ◽  
Huilong Zheng

2013 ◽  
Vol 380-384 ◽  
pp. 1725-1728
Author(s):  
Yang Hu ◽  
Huai Yu Kang

In this paper, we Research on Propagation Numerical Simulation and damage effect of Blast Shock Waves in Subway Station by using LS-DYNA dynamic finite element calculation program , the results reproduce the formation process of the explosive flow field, and analysis the shock wave waveform, attenuation and walking pattern, provides the theoretical basis for further experimental study.


2021 ◽  
Vol 246 ◽  
pp. 113073
Author(s):  
Yun Zhou ◽  
Dingbin Li ◽  
Fei Shi ◽  
Weili Luo ◽  
Xuesong Deng

Sign in / Sign up

Export Citation Format

Share Document