scholarly journals Functional Niche Competition Between Normal Hematopoietic Stem and Progenitor Cells and Myeloid Leukemia Cells

Stem Cells ◽  
2015 ◽  
Vol 33 (12) ◽  
pp. 3635-3642 ◽  
Author(s):  
Chen Glait-Santar ◽  
Ronan Desmond ◽  
Xingmin Feng ◽  
Taha Bat ◽  
Jichun Chen ◽  
...  
Blood ◽  
2007 ◽  
Vol 110 (8) ◽  
pp. 2880-2888 ◽  
Author(s):  
Hein Schepers ◽  
Djoke van Gosliga ◽  
Albertus T. J. Wierenga ◽  
Bart J. L. Eggen ◽  
Jan Jacob Schuringa ◽  
...  

Abstract The transcription factor STAT5 fulfills a distinct role in the hematopoietic system, but its precise role in primitive human hematopoietic cells remains to be elucidated. Therefore, we performed STAT5 RNAi in sorted cord blood (CB) and acute myeloid leukemia (AML) CD34+ cells by lentiviral transduction and investigated effects of STAT5 downmodulation on the normal stem/progenitor cell compartment and the leukemic counterpart. STAT5 RNAi cells displayed growth impairment, without affecting their differentiation in CB and AML cultures on MS5 stroma. In CB, limiting-dilution assays demonstrated a 3.9-fold reduction in progenitor numbers. Stem cells were enumerated in long-term culture-initiating cell (LTC-IC) assays, and the average LTC-IC frequency was 3.25-fold reduced from 0.13% to 0.04% by STAT5 down-regulation. Single-cell sorting experiments of CB CD34+/CD38− cells demonstrated a 2-fold reduced cytokine-driven expansion, with a subsequent 2.3-fold reduction of progenitors. In sorted CD34+ AML cells with constitutive STAT5 phosphorylation (5/8), STAT5 RNAi demonstrated a reduction in cell number (72% ± 17%) and a decreased expansion (17 ± 15 vs 80 ± 58 in control cultures) at week 6 on MS5 stroma. Together, our data indicate that STAT5 expression is required for the maintenance and expansion of primitive hematopoietic stem and progenitor cells, both in normal as well as leukemic hematopoiesis.


Author(s):  
Xin Wang ◽  
Uris Ros ◽  
Deepti Agrawal ◽  
Eva C. Keller ◽  
Julia Slotta-Huspenina ◽  
...  

AbstractThe blockade of cellular differentiation represents a hallmark of acute myeloid leukemia (AML), which is largely attributed to the dysfunction of lineage-specific transcription factors controlling cellular differentiation. However, alternative mechanisms of cellular differentiation programs in AML remain largely unexplored. Here we report that mixed lineage kinase domain-like protein (MLKL) contributes to the cellular differentiation of transformed hematopoietic progenitor cells in AML. Using gene-targeted mice, we show that MLKL facilitates the release of granulocyte colony-stimulating factor (G-CSF) by controlling membrane permeabilization in leukemic cells. Mlkl−/− hematopoietic stem and progenitor cells released reduced amounts of G-CSF while retaining their capacity for CSF3 (G-CSF) mRNA expression, G-CSF protein translation, and G-CSF receptor signaling. MLKL associates with early endosomes and controls G-CSF release from intracellular storage by plasma membrane pore formation, whereas cell death remained unaffected by loss of MLKL. Of note, MLKL expression was significantly reduced in AML patients, specifically in those with a poor-risk AML subtype. Our data provide evidence that MLKL controls myeloid differentiation in AML by controlling the release of G-CSF from leukemic progenitor cells.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 40-40
Author(s):  
Maria M. Aivalioti ◽  
Tushar D Bhagat ◽  
Aditi Paranjpe ◽  
Boris Bartholdy ◽  
Kith Pradhan ◽  
...  

Acute myeloid leukemia (AML) is the most frequent leukemia in elderly individuals with a median age at diagnosis of 67 years (Juliusson et al., Blood 2009). It arises in a step-wise process and originates from hematopoietic stem cells (HSC) (Jan et al.,Sci Transl Med. 2012). Genetic and epigenetic alterations drive the formation of pre-leukemic HSC clones with altered function, which can gain dominance and eventually give rise to AML upon the acquisition of cooperating lesions (Jan et al.,Sci Transl Med. 2012). However, it is currently impossible to predict which healthy elderly individuals with clonal hematopoiesis will eventually develop myeloid malignancies, as the pathways to leukemia are unknown. Heterozygous inactivating mutations of the epigenetic regulator Ten-Eleven Translocation-2 (TET2) are commonly found in patients with AML, yet also in a remarkable fraction of healthy elderly individuals in whom it is associated with clonal hematopoiesis (Busque, et al Nat Genet. 2012). These observations and studies in Tet2-deficient mice strongly suggest that TET2 inactivation is an early event in the pathogenesis of myeloid malignancies, but is not sufficient to fully transform HSC (Moran-Crusio et al., Cancel Cell 2011). TET2 cooperates with several transcription factors to regulate hematopoiesis (Rasmussen et al., Genome Res 2019), one of which is PU.1 (de la Rica et al., Genome Biol. 2013), an essential transcription factor governing normal hematopoiesis (Iwasaki et al., Blood 2005). In humans, PU.1 activity or expression is only moderately impaired in the majority of AML patients, and remarkably, also in aged HSC (Will et al., Nat Med. 2015), underscoring the essentiality of PU.1. Importantly, PU.1 target genes are frequently found hypermethylated in AML (Sonnet et al., Genome Med. 2014, Kaasinen et al., Nat Commun. 2019), suggesting a profound epigenetic inactivation of the PU.1 network. We hypothesized that moderate impairment of PU.1 abundance, as found in AML, can cooperate with loss-of-function mutations of Tet2 to initiate malignancy. We developed a novel tissue-specific compound mutant mouse model carrying heterozygous deletion of an upstream regulatory element (URE) of Pu.1 along with Tet2 deletion (Vav-iCre+ PU.1URΕ∆/+Tet2+/flox; Vav-iCre+ PU.1URΕ∆/+Tet2flox/flox). While none of the single mutant mice developed AML, compound mutant mice developed aggressive myeloid leukemia whose penetrance and latency exhibited Tet2 dose dependency. The disease presented with leukocytosis, anemia and splenomegaly. By cell morphology analysis of the peripheral blood, bone marrow and spleen, the leukemic mice exhibited accumulation of differentiation-blocked myeloblasts, myelocytes and/or metamyelocytes, that was confirmed using detailed myeloid differentiation markers, distinguishing the disease in immature or mature AML. Furthermore, gold standard in vitro and in vivo assays, assessing both self-renewal and differentiation capacity of double mutant mice-derived cells, revealed that the expanded differentiation-blocked stem and progenitor cells bear aberrant self-renewal and disease-initiating capacities. Comprehensive molecular profiling by next generation sequencing of disease-initiating cells uncovered a substantial overlap with human AML, such as functional GF1b loss with concomitant overexpression of CD90/Thy1 (Thivakaran et al., Haematologica 2018). Importantly, our analyses also revealed transcriptional dysregulation, hypermethylation of PU.1 regulated enhancers with concomitant loss of enhancer activity and alterations in chromatin accessibility of particularly genes co-bound by PU.1 and TET2. Current efforts focus on identifying key effectors of the dysregulated PU.1/TET2 sub-network driving malignant transformation in clonal hematopoiesis. Our collected data provide proof of concept that moderate PU.1 dose impairment can functionally cooperate with the inactivation of Tet2 in the initiation of myeloid leukemia and uncovers a likely unifying AML pathomechansim. Disclosures Will: Novartis Pharmaceuticals: Other: Service on advisory boards, Research Funding.


2017 ◽  
Vol 6 (12) ◽  
pp. 2942-2956 ◽  
Author(s):  
Sócrates Avilés-Vázquez ◽  
Antonieta Chávez-González ◽  
Alfredo Hidalgo-Miranda ◽  
Dafne Moreno-Lorenzana ◽  
Lourdes Arriaga-Pizano ◽  
...  

Blood ◽  
1995 ◽  
Vol 85 (11) ◽  
pp. 3040-3047 ◽  
Author(s):  
MJ Fackler ◽  
DS Krause ◽  
OM Smith ◽  
CI Civin ◽  
WS May

CD34 is expressed on human and murine hematopoietic stem and progenitor cells and its clinical usefulness for isolation of stem/progenitor cells has been well established. Although expression of CD34 is regulated in a developmental stage-specific manner, the function of CD34 is not known. Recently we have shown that both a full-length and truncated form of CD34 protein is expressed by hematopoietic cells (Blood 84:691, 1994). To test whether failure to suppress either form of CD34 could affect terminal myeloid differentiation, we constitutively expressed these CD34 proteins in murine M1 myeloid leukemia cells, which can be terminally differentiated to macrophages by treatment with interleukin-6 of leukemia inhibitory factor. Surprisingly our results show that forced expression of the full-length but not the truncated form of CD34 impedes terminal differentiation by these agents. Because the difference between the two forms of CD34 protein resides in the length of their respective cytoplasmic tail domains, our findings strongly suggest that the cytoplasmic domain region of full-length CD34 is responsible for the observed maturation arrest phenotype. These findings suggest a potential negative regulatory role for full-length CD34 in hematopoietic cell differentiation and may explain, at least in part, the block in maturation observed in CD34+ acute myeloid leukemia.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2795-2795
Author(s):  
Geethu Thomas ◽  
Laura Garcia Prat ◽  
Marcela Gronda ◽  
Rose Hurren ◽  
Neil MacLean ◽  
...  

Abstract Hematopoietic cells are arranged in a hierarchy where stem and progenitor cells differentiate into mature blood cells. Likewise, AML (Acute Myeloid Leukemia) is also hierarchical with leukemic stem and progenitor cells giving rise to more mature and differentiated blasts. Recent studies have shown that mitochondrial enzymes such as IDH2 can regulate AML stemness by altering metabolites that affect epigenetic marks. However, it is unknown whether mitochondrial metabolic enzymes can directly localize to the nucleus to regulate stemness in AML and normal hematopoietic cells. Here, we show that the mitochondrial enzyme, Hexokinase 2, localizes to the nucleus in AML and normal hematopoietic stem cells to maintain stemness. We sought to identify mitochondrial metabolic enzymes that localize to the nucleus of stem cells, by evaluating the stem and bulk fractions from 8227 leukemia cells. 8227 leukemia cells are arranged in a hierarchy with functionally defined stem cells present in the CD34+CD38- fraction. We separated 8227 cells into CD34+CD38- and CD34-CD38+ populations by FACS sorting and prepared lysates of the nuclear and cytoplasmic fractions from each population. Using immunoblotting, we measured levels of mitochondrial enzymes in the subcellular fractions of each population. We discovered that the metabolic enzyme Hexokinase 2 (HK2) was increased in the nuclear fraction of 8227 stem cells compared to bulk cells. In contrast, other mitochondrial enzymes such as Aconitase 2 and Succinate Dehydrogenase B were not detected in the nuclear fractions. HK2 is an outer mitochondrial membrane protein that phosphorylates glucose to glucose-6-phosphate, thereby initiating glycolysis and the entry of glucose metabolites into the TCA cycle in the mitochondria. The nuclear localization of HK2 in mammalian cells has not been previous reported. We confirmed that 8227 cells have nuclear HK2 by confocal fluorescent microscopy and also demonstrated nuclear HK2 in AML cell lines (OCI-AML2, NB4, K562, and MV411) and primary AML samples. We also FACS sorted normal cord blood into populations of stem/progenitor (HSC, MPP, MLP, CMP, GMP and MEP) and differentiated (B cells, T cells, NK cells, Monocytes and Granulocytes) cells. The localization of HK2 in these cell fractions was measured by immunofluorescence and quantified by Metamorph and Imaris. Nuclear HK2 was detected in the stem/progenitor cells and progressively declined to minimal levels as the cells matured (Fig 1A). The mitochondrial localization of HK2 is dependent on AKT-mediated phosphorylation of Thr-473 and inhibited by dephosphorylation by the phosphatase PHLPP1. We asked whether phosphorylation of HK2 regulates the nuclear abundance of HK2. Using AML2 cells, we showed that knockdown of PHLPP1 decreased the abundance of nuclear HK2, while inhibition of AKT increased HK2 in the nucleus. Finally, we tested whether the nuclear localization of HK2 was functionally important to maintain stemness. We over-expressed HK2 tagged with nuclear localizing signals (PKKKRKV and PAAKRVKLD) in 8227 and NB4 leukemia cells. We confirmed the selective over-expression of HK2 in the nucleus of these cells by immunoblotting and immunofluorescence. Increasing nuclear HK2 did not alter the proliferation of the cells under basal conditions. However, increasing nuclear HK2 enhanced clonogenic growth and blocked retinoic acid-mediated cell differentiation. In summary, we discovered that the unphosphorylated form of the metabolic enzyme HK2 localizes to the nucleus in malignant and normal hematopoietic stem cells and is functionally important to maintain stem/progenitor state. Thus, we define a new role for mitochondrial enzymes in the regulation of stemness and differentiation. Disclosures Schimmer: Medivir AB: Research Funding; Jazz Pharmaceuticals: Consultancy; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Otsuka Pharmaceuticals: Consultancy.


2014 ◽  
Vol 211 (4) ◽  
pp. 605-612 ◽  
Author(s):  
Marcus Järås ◽  
Peter G. Miller ◽  
Lisa P. Chu ◽  
Rishi V. Puram ◽  
Emma C. Fink ◽  
...  

Despite extensive insights into the underlying genetics and biology of acute myeloid leukemia (AML), overall survival remains poor and new therapies are needed. We found that casein kinase 1 α (Csnk1a1), a serine-threonine kinase, is essential for AML cell survival in vivo. Normal hematopoietic stem and progenitor cells (HSPCs) were relatively less affected by shRNA-mediated knockdown of Csnk1a1. To identify downstream mediators of Csnk1a1 critical for leukemia cells, we performed an in vivo pooled shRNA screen and gene expression profiling. We found that Csnk1a1 knockdown results in decreased Rps6 phosphorylation, increased p53 activity, and myeloid differentiation. Consistent with these observations, p53-null leukemias were insensitive to Csnk1a1 knockdown. We further evaluated whether D4476, a casein kinase 1 inhibitor, would exhibit selective antileukemic effects. Treatment of leukemia stem cells (LSCs) with D4476 showed highly selective killing of LSCs over normal HSPCs. In summary, these findings demonstrate that Csnk1a1 inhibition causes reduced Rps6 phosphorylation and activation of p53, resulting in selective elimination of leukemia cells, revealing Csnk1a1 as a potential therapeutic target for the treatment of AML.


Stem Cells ◽  
2021 ◽  
Vol 39 (9) ◽  
pp. 1270-1284
Author(s):  
Paul Jäger ◽  
Stefanie Geyh ◽  
Sören Twarock ◽  
Ron‐Patrick Cadeddu ◽  
Pablo Rabes ◽  
...  

2001 ◽  
Vol 38 (2) ◽  
pp. 139-147
Author(s):  
Jan W. Gratama ◽  
D. Robert Sutherland ◽  
Michael Keeney

Sign in / Sign up

Export Citation Format

Share Document