scholarly journals Full-length but not truncated CD34 inhibits hematopoietic cell differentiation of M1 cells

Blood ◽  
1995 ◽  
Vol 85 (11) ◽  
pp. 3040-3047 ◽  
Author(s):  
MJ Fackler ◽  
DS Krause ◽  
OM Smith ◽  
CI Civin ◽  
WS May

CD34 is expressed on human and murine hematopoietic stem and progenitor cells and its clinical usefulness for isolation of stem/progenitor cells has been well established. Although expression of CD34 is regulated in a developmental stage-specific manner, the function of CD34 is not known. Recently we have shown that both a full-length and truncated form of CD34 protein is expressed by hematopoietic cells (Blood 84:691, 1994). To test whether failure to suppress either form of CD34 could affect terminal myeloid differentiation, we constitutively expressed these CD34 proteins in murine M1 myeloid leukemia cells, which can be terminally differentiated to macrophages by treatment with interleukin-6 of leukemia inhibitory factor. Surprisingly our results show that forced expression of the full-length but not the truncated form of CD34 impedes terminal differentiation by these agents. Because the difference between the two forms of CD34 protein resides in the length of their respective cytoplasmic tail domains, our findings strongly suggest that the cytoplasmic domain region of full-length CD34 is responsible for the observed maturation arrest phenotype. These findings suggest a potential negative regulatory role for full-length CD34 in hematopoietic cell differentiation and may explain, at least in part, the block in maturation observed in CD34+ acute myeloid leukemia.

Blood ◽  
2007 ◽  
Vol 110 (8) ◽  
pp. 2880-2888 ◽  
Author(s):  
Hein Schepers ◽  
Djoke van Gosliga ◽  
Albertus T. J. Wierenga ◽  
Bart J. L. Eggen ◽  
Jan Jacob Schuringa ◽  
...  

Abstract The transcription factor STAT5 fulfills a distinct role in the hematopoietic system, but its precise role in primitive human hematopoietic cells remains to be elucidated. Therefore, we performed STAT5 RNAi in sorted cord blood (CB) and acute myeloid leukemia (AML) CD34+ cells by lentiviral transduction and investigated effects of STAT5 downmodulation on the normal stem/progenitor cell compartment and the leukemic counterpart. STAT5 RNAi cells displayed growth impairment, without affecting their differentiation in CB and AML cultures on MS5 stroma. In CB, limiting-dilution assays demonstrated a 3.9-fold reduction in progenitor numbers. Stem cells were enumerated in long-term culture-initiating cell (LTC-IC) assays, and the average LTC-IC frequency was 3.25-fold reduced from 0.13% to 0.04% by STAT5 down-regulation. Single-cell sorting experiments of CB CD34+/CD38− cells demonstrated a 2-fold reduced cytokine-driven expansion, with a subsequent 2.3-fold reduction of progenitors. In sorted CD34+ AML cells with constitutive STAT5 phosphorylation (5/8), STAT5 RNAi demonstrated a reduction in cell number (72% ± 17%) and a decreased expansion (17 ± 15 vs 80 ± 58 in control cultures) at week 6 on MS5 stroma. Together, our data indicate that STAT5 expression is required for the maintenance and expansion of primitive hematopoietic stem and progenitor cells, both in normal as well as leukemic hematopoiesis.


Author(s):  
Xin Wang ◽  
Uris Ros ◽  
Deepti Agrawal ◽  
Eva C. Keller ◽  
Julia Slotta-Huspenina ◽  
...  

AbstractThe blockade of cellular differentiation represents a hallmark of acute myeloid leukemia (AML), which is largely attributed to the dysfunction of lineage-specific transcription factors controlling cellular differentiation. However, alternative mechanisms of cellular differentiation programs in AML remain largely unexplored. Here we report that mixed lineage kinase domain-like protein (MLKL) contributes to the cellular differentiation of transformed hematopoietic progenitor cells in AML. Using gene-targeted mice, we show that MLKL facilitates the release of granulocyte colony-stimulating factor (G-CSF) by controlling membrane permeabilization in leukemic cells. Mlkl−/− hematopoietic stem and progenitor cells released reduced amounts of G-CSF while retaining their capacity for CSF3 (G-CSF) mRNA expression, G-CSF protein translation, and G-CSF receptor signaling. MLKL associates with early endosomes and controls G-CSF release from intracellular storage by plasma membrane pore formation, whereas cell death remained unaffected by loss of MLKL. Of note, MLKL expression was significantly reduced in AML patients, specifically in those with a poor-risk AML subtype. Our data provide evidence that MLKL controls myeloid differentiation in AML by controlling the release of G-CSF from leukemic progenitor cells.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 40-40
Author(s):  
Maria M. Aivalioti ◽  
Tushar D Bhagat ◽  
Aditi Paranjpe ◽  
Boris Bartholdy ◽  
Kith Pradhan ◽  
...  

Acute myeloid leukemia (AML) is the most frequent leukemia in elderly individuals with a median age at diagnosis of 67 years (Juliusson et al., Blood 2009). It arises in a step-wise process and originates from hematopoietic stem cells (HSC) (Jan et al.,Sci Transl Med. 2012). Genetic and epigenetic alterations drive the formation of pre-leukemic HSC clones with altered function, which can gain dominance and eventually give rise to AML upon the acquisition of cooperating lesions (Jan et al.,Sci Transl Med. 2012). However, it is currently impossible to predict which healthy elderly individuals with clonal hematopoiesis will eventually develop myeloid malignancies, as the pathways to leukemia are unknown. Heterozygous inactivating mutations of the epigenetic regulator Ten-Eleven Translocation-2 (TET2) are commonly found in patients with AML, yet also in a remarkable fraction of healthy elderly individuals in whom it is associated with clonal hematopoiesis (Busque, et al Nat Genet. 2012). These observations and studies in Tet2-deficient mice strongly suggest that TET2 inactivation is an early event in the pathogenesis of myeloid malignancies, but is not sufficient to fully transform HSC (Moran-Crusio et al., Cancel Cell 2011). TET2 cooperates with several transcription factors to regulate hematopoiesis (Rasmussen et al., Genome Res 2019), one of which is PU.1 (de la Rica et al., Genome Biol. 2013), an essential transcription factor governing normal hematopoiesis (Iwasaki et al., Blood 2005). In humans, PU.1 activity or expression is only moderately impaired in the majority of AML patients, and remarkably, also in aged HSC (Will et al., Nat Med. 2015), underscoring the essentiality of PU.1. Importantly, PU.1 target genes are frequently found hypermethylated in AML (Sonnet et al., Genome Med. 2014, Kaasinen et al., Nat Commun. 2019), suggesting a profound epigenetic inactivation of the PU.1 network. We hypothesized that moderate impairment of PU.1 abundance, as found in AML, can cooperate with loss-of-function mutations of Tet2 to initiate malignancy. We developed a novel tissue-specific compound mutant mouse model carrying heterozygous deletion of an upstream regulatory element (URE) of Pu.1 along with Tet2 deletion (Vav-iCre+ PU.1URΕ∆/+Tet2+/flox; Vav-iCre+ PU.1URΕ∆/+Tet2flox/flox). While none of the single mutant mice developed AML, compound mutant mice developed aggressive myeloid leukemia whose penetrance and latency exhibited Tet2 dose dependency. The disease presented with leukocytosis, anemia and splenomegaly. By cell morphology analysis of the peripheral blood, bone marrow and spleen, the leukemic mice exhibited accumulation of differentiation-blocked myeloblasts, myelocytes and/or metamyelocytes, that was confirmed using detailed myeloid differentiation markers, distinguishing the disease in immature or mature AML. Furthermore, gold standard in vitro and in vivo assays, assessing both self-renewal and differentiation capacity of double mutant mice-derived cells, revealed that the expanded differentiation-blocked stem and progenitor cells bear aberrant self-renewal and disease-initiating capacities. Comprehensive molecular profiling by next generation sequencing of disease-initiating cells uncovered a substantial overlap with human AML, such as functional GF1b loss with concomitant overexpression of CD90/Thy1 (Thivakaran et al., Haematologica 2018). Importantly, our analyses also revealed transcriptional dysregulation, hypermethylation of PU.1 regulated enhancers with concomitant loss of enhancer activity and alterations in chromatin accessibility of particularly genes co-bound by PU.1 and TET2. Current efforts focus on identifying key effectors of the dysregulated PU.1/TET2 sub-network driving malignant transformation in clonal hematopoiesis. Our collected data provide proof of concept that moderate PU.1 dose impairment can functionally cooperate with the inactivation of Tet2 in the initiation of myeloid leukemia and uncovers a likely unifying AML pathomechansim. Disclosures Will: Novartis Pharmaceuticals: Other: Service on advisory boards, Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2828-2828
Author(s):  
Asumi Yokota ◽  
Hideyo Hirai ◽  
Tsukimi Shoji ◽  
Taira Maekawa ◽  
Keiko Okuda

Abstract ABL family kinases, ABL1 (ABL) and ABL2 (ARG), share functional domains such as SH2-, SH3- and kinase domains, and are highly homologous except their C-terminal domain. Fusions to TEL (ETV6), TEL-ABL and TEL-ARG, are constitutively-active kinases and have been reported in rare cases of human CML, AML or ALL. Although TEL-ABL is involved in leukemogenesis, the role of TEL-ARG has not been elucidated because this fusion protein has been always accompanied with other major translocations, such as PML-RARα. We have previously shown that although their kinase activities are comparable, TEL-ABL strongly transforms Ba/F3 cells, while TEL-ARG has a much lower transforming activity, and these differences are attributed to their distinct C-terminal domain (Okuda K and Hirai H, Open Journal of Blood Diseases 2013). At the last ASH annual meeting, we have shown that TEL-ABL induces myeloid leukemia in a short latency, whereas TEL-ARG induces lethal mastocytosis in a long latency in a mouse bone marrow (BM) transplantation model (Abstract number #2368, ASH 2014). Here we investigated the clonogenicity of mastocytosis and explored the detailed mechanism underlying the onset of mastocytosis induced by TEL-ARG. First, we performed a serial transplantation experiment to evaluate mastocytosis-initiating capacity of TEL-ARG-expressing cells. Hematopoietic stem/progenitor cells (HSPCs) from 5-FU-treated mice were retrovirally transduced with TEL-ARG and transplanted to the first recipient mice. BM cells from moribund mice due to mastocytosis were transplanted to the sublethally irradiated second recipients. On day 219 after transplantation, we detected mast cells circulating in the peripheral blood of these two recipients, and observed severe pancytopenia and body weight loss in one of them. In this mouse, mast cells engulfing blood cells were accumulated in the BM and spleen, and subcutaneous tissues were massively infiltrated by mast cells, all of which were characteristics of mastocytosis observed in the first recipients. These results indicate that TEL-ARG confers mastocytosis-initiating capacity on HSPCs. Next, we focused on the mechanisms why TEL-ARG induces mastocytosis, whereas TEL-ABL induces myeloid leukemia. HSPCs from 5-FU-treated mice were retrovirally transduced with TEL-ABL or TEL-ARG, and subjected to the in vitro mast cell differentiation assay in the presence of WEHI-conditioned medium, as a source of IL-3 (Figure). IL-3 enhanced differentiation and proliferation of empty-virus-transduced HSPCs toward mast cells in a dose-dependent manner. TEL-ARG induced mast cell differentiation in the absence of IL-3 to some extent, and IL-3 markedly increased mast cell number even at a lower concentration. TEL-ARG-expressing mast cells continue to proliferate for more than 4 months maintaining their phenotype as mast cells. In contrast, IL-3 did not enhance mast cell differentiation but support myeloid differentiation of TEL-ABL-expressing HSPCs. These data suggest that while TEL-ABL induces myeloid differentiation, TEL-ARG strongly promotes differentiation toward mast cells through sensitizing HSPCs to IL-3, an important factor for differentiation, survival and proliferation of mast cells. Furthermore, these results might account for differences in the phenotypes of diseases induced by TEL-ABL (myeloid leukemia) or TEL-ARG (mastocytosis). In conclusions, TEL-ABL strongly induces myeloid-skewed differentiation, whereas TEL-ARG promotes mast cell differentiation through increasing sensitivity to IL-3 and induces clonal mast cell disease. We are currently investigating the molecular mechanisms by which they activate distinct differentiation pathways toward myeloid cells or mast cells. We believe that further exploration of the underlying mechanisms will deepen our understanding of the molecular basis for ABL kinase-mediated leukemogenesis as well as mast cell disorders. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Vol 6 (12) ◽  
pp. 2942-2956 ◽  
Author(s):  
Sócrates Avilés-Vázquez ◽  
Antonieta Chávez-González ◽  
Alfredo Hidalgo-Miranda ◽  
Dafne Moreno-Lorenzana ◽  
Lourdes Arriaga-Pizano ◽  
...  

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 30-30
Author(s):  
Yuanyuan Liu ◽  
Feifei Xiao ◽  
Bijie Yang ◽  
Zhiwei Chen ◽  
Jieping Chen ◽  
...  

Wilms' tumor 1-associating protein (WTAP) is a ubiquitously expressed nuclear protein has been associated with regulation of cell proliferation, apoptosis, embryonic development, cell cycle, RNA splicing and stabilization, N6-Methyladenosine RNA modification in various physiological processes. Recently,WTAPwas reported to promoter tumorigenicity in Glioblastoma and cholangiocarcinoma. Besides solid tumors,WTAPplays an important role in abnormal proliferation and arrested differentiation in acute myeloid leukemia (AML) cell, suggesting its oncogenic activity. For its promising novel therapeutic target in AML, a systematic investigation of the roles ofWTAPin normal hematopoiesis is warranted.To investigate the function ofWTAPin normal hematopoietic system, we firstly determined the mRNA level ofWTAPin different hematopoietic stem and progenitor cells (HSPCs) and several mature populations in C57/B6 mouse bone marrow (BM).WTAPwas ubiquitously expressed in different cell populations and especially elevated in HSPCs. For WTAP-null and heterozygous caused early embryonic lethality, we generated endothelial system conditional knockout (cKO) mice by crossing WTAP floxed mice with poly (I:C) induced Mx1-Cre transgenic mice. In poly (I:C) inducedWTAPfl/fl-Mx1-Cre, WTAP deficiency lead to approximately 2-fold increase in HSC and LSK pool size, and modest expansion of HPC, CLP and LMPP population. In competitive BM transplantation assay, lossWTAPshowed a significantly decreased repopulation capacity. WhileWTAPknockout did not significantly affect the proliferation, cell cycle and apoptosis of HSPCs tested by Brdu, Ki67 and Annexin-V straining assay. Mechanistically, deletion ofWTAPin HSC resulted in decreased transcription of myeloid cell and erythrocyte differentiation gene (including Jak3, Jun and Junb) and genes regulating pluripotency of stem cells (induding Akt2, Fzd1/9 and Mapk3).Collectively, we speculateWTAPplay important role in blocking cell differentiation of HSPCs. Currently, we are conducting a series of studies to reveal the underlying molecular mechanism(s) ofWTAPregulating normal hematopoiesis. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 890-890
Author(s):  
Amir Schajnovitz ◽  
Alexander Kalinkovich ◽  
Kfir Lapid ◽  
Alexander Berchanski ◽  
Tomer Itkin ◽  
...  

Abstract Background Rapid mobilization of hematopoietic stem and progenitor cells (HSPCs) from the bone marrow (BM) to the peripheral blood by anti-CXCR4 agents such as AMD3100 is a complex process, which requires CXCL12 secretion, activation of proteolytic enzymes and supporting cellular compartments (Dar et. al, Leukemia 2011). Notably, components of innate immune system were also shown to be involved (Ratajczak et. al, Leukemia 2010). Human β-defensin-3 (hBD3) is an antimicrobial peptide possessing also anti-CXCR4 effects on human T cells in vitro (Feng et. al, JI 2006), suggesting its HSPC mobilizing potential. Here, we describe a novel approach for targeting CXCR4 in vivo by utilizing β-defensin-derived peptides, resulting in rapid HSPC mobilization. Results While AMD3100 blocked CXCL12-mediated signaling and migration of enriched BM mononuclear cells (MNCs) in vitro, we unexpectedly detected rapid phosphorylation of AKT, p38 and ERK1/2 in BM stromal cells (BMSCs). Interestingly, single administration of AMD3100 to mice resulted in enhancement of CXCR4 phosphorylation within minutes in both BM residing mesenchymal stem/progenitor cells (MSCs) and HSPCs, thus suggesting a CXCR4 agonistic activity. Aiming to test HSPC mobilizing potential of hBD3 and avoiding potential toxicity of systemic administration, we synthesized short linear peptides, comprising the C-terminal parts of hBD3 and the murine ortholog β-defensin-14 (mBD14), as well as a cyclic peptide of hBD3, comprising the same amino acids as the linear one, to serve as a control. All full-length β-defensins and tested peptides (both linear and cyclic) specifically bound CXCR4 (demonstrated by docking approach and anti-CXCR4 antibody competition assay) and efficiently blocked CXCL12-mediated activity of enriched BM MNCs in vitro including cell migration and CXCR4-dependent HIV infection. Intriguingly, full-length β-defensins and derived linear peptides (but not cyclic) revealed a strong stimulatory effect on BMSCs in vitro: triggering phosphorylation of AKT, p38 and ERK1/2 along with enhancing secretion of functional CXCL12. Administration of linear peptides to mice led to a fast activation of CXCR4 signaling in BMSCs and MSCs as well as in HSPCs accompanied by CXCL12 release to the circulation, increased activity of proteolytic enzymes and consequent rapid mobilization of progenitors as well as long-term repopulating stem cells. In addition, linear peptides augmented AMD3100-induced rapid mobilization. Importantly, the control cyclic peptide, which bound CXCR4 but failed to activate BMSCs in vitro, did not induce HSPC mobilization in vivo. Moreover, it inhibited both steady-state egress and AMD3100-induced mobilization of HSPCs. A series of in vivo inhibitory analyses confirmed dependence of hBD3- and mBD14-derived peptide-induced HSPC mobilization on the activation of CXCL12/CXCR4 axis and revealed involvement of uPA and JNK signaling as well as ROS generation. Conclusions Our study demonstrated for the first time the capability of β-defensin-derived peptides to activate in vivo CXCL12/CXCR4 signaling in both hematopoietic and non-hematopoietic BM cells, leading to rapid HSPC mobilization. We suggest that activation of CXCR4 signaling in non-hematopoietic BM cells is crucial for inducing HSPC mobilization. Accordingly, CXCR4-binding agents capable of triggering CXCR4 signaling in non-hematopoietic BM cells in vitro, would induce rapid HSPC mobilization. The results presented here help to better understand the mechanisms of rapid HSPC mobilization and have the potential of improving existing clinical protocols to increase the yield of HSPC harvest for transplantation. Disclosures: Scadden: Fate Therapeutics: Consultancy, Equity Ownership.


Stem Cells ◽  
2015 ◽  
Vol 33 (12) ◽  
pp. 3635-3642 ◽  
Author(s):  
Chen Glait-Santar ◽  
Ronan Desmond ◽  
Xingmin Feng ◽  
Taha Bat ◽  
Jichun Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document