Ground motion issues for seismic analysis of tall buildings: a status report

2007 ◽  
Vol 16 (5) ◽  
pp. 665-674 ◽  
Author(s):  
Yousef Bozorgnia ◽  
Kenneth W. Campbell ◽  
Nicolas Luco ◽  
Jack P. Moehle ◽  
Farzad Naeim ◽  
...  
2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Piotr Adam Bońkowski ◽  
Juliusz Kuś ◽  
Zbigniew Zembaty

AbstractRecent research in engineering seismology demonstrated that in addition to three translational seismic excitations along x, y and z axes, one should also consider rotational components about these axes when calculating design seismic loads for structures. The objective of this paper is to present the results of a seismic response numerical analysis of a mine tower (also called in the literature a headframe or a pit frame). These structures are used in deep mining on the ground surface to hoist output (e.g. copper ore or coal). The mine towers belong to the tall, slender structures, for which rocking excitations may be important. In the numerical example, a typical steel headframe 64 m high is analysed under two records of simultaneous rocking and horizontal seismic action of an induced mine shock and a natural earthquake. As a result, a complicated interaction of rocking seismic effects with horizontal excitations is observed. The contribution of the rocking component may sometimes reduce the overall seismic response, but in most cases, it substantially increases the seismic response of the analysed headframe. It is concluded that in the analysed case of the 64 m mining tower, the seismic response, including the rocking ground motion effects, may increase up to 31% (for natural earthquake ground motion) or even up to 135% (for mining-induced, rockburst seismic effects). This means that not only in the case of the design of very tall buildings or industrial chimneys but also for specific yet very common structures like mine towers, including the rotational seismic effects may play an important role.


2021 ◽  
pp. 875529302098196
Author(s):  
Siamak Sattar ◽  
Anne Hulsey ◽  
Garrett Hagen ◽  
Farzad Naeim ◽  
Steven McCabe

Performance-based seismic design (PBSD) has been recognized as a framework for designing new buildings in the United States in recent years. Various guidelines and standards have been developed to codify and document the implementation of PBSD, including “ Seismic Evaluation and Retrofit of Existing Buildings” (ASCE 41-17), the Tall Buildings Initiative’s Guidelines for Performance-Based Seismic Design of Tall Buildings (TBI Guidelines), and the Los Angeles Tall Buildings Structural Design Council’s An Alternative Procedure for Seismic Analysis and Design of Tall Buildings Located in the Los Angeles Region (LATBSDC Procedure). The main goal of these documents is to regularize the implementation of PBSD for practicing engineers. These documents were developed independently with experts from varying backgrounds and organizations and consequently have differences in several degrees from basic intent to the details of the implementation. As the main objective of PBSD is to ensure a specified building performance, these documents would be expected to provide similar recommendations for achieving a given performance objective for new buildings. This article provides a detailed comparison among each document’s implementation of PBSD for reinforced concrete buildings, with the goal of highlighting the differences among these documents and identifying provisions in which the designed building may achieve varied performance depending on the chosen standard/guideline. This comparison can help committees developing these documents to be aware of their differences, investigate the sources of their divergence, and bring these documents closer to common ground in future cycles.


Author(s):  
Aidin Tamhidi ◽  
Nicolas Kuehn ◽  
S. Farid Ghahari ◽  
Arthur J. Rodgers ◽  
Monica D. Kohler ◽  
...  

ABSTRACT Ground-motion time series are essential input data in seismic analysis and performance assessment of the built environment. Because instruments to record free-field ground motions are generally sparse, methods are needed to estimate motions at locations with no available ground-motion recording instrumentation. In this study, given a set of observed motions, ground-motion time series at target sites are constructed using a Gaussian process regression (GPR) approach, which treats the real and imaginary parts of the Fourier spectrum as random Gaussian variables. Model training, verification, and applicability studies are carried out using the physics-based simulated ground motions of the 1906 Mw 7.9 San Francisco earthquake and Mw 7.0 Hayward fault scenario earthquake in northern California. The method’s performance is further evaluated using the 2019 Mw 7.1 Ridgecrest earthquake ground motions recorded by the Community Seismic Network stations located in southern California. These evaluations indicate that the trained GPR model is able to adequately estimate the ground-motion time series for frequency ranges that are pertinent for most earthquake engineering applications. The trained GPR model exhibits proper performance in predicting the long-period content of the ground motions as well as directivity pulses.


2021 ◽  
Author(s):  
Molly Gallahue ◽  
Leah Salditch ◽  
Madeleine Lucas ◽  
James Neely ◽  
Susan Hough ◽  
...  

<div> <p>Probabilistic seismic hazard assessments forecast levels of earthquake shaking that should be exceeded with only a certain probability over a given period of time are important for earthquake hazard mitigation. These rely on assumptions about when and where earthquakes will occur, their size, and the resulting shaking as a function of distance as described by ground-motion models (GMMs) that cover broad geologic regions. Seismic hazard maps are used to develop building codes.</p> </div><div> <p>To explore the robustness of maps’ shaking forecasts, we consider how maps hindcast past shaking. We have compiled the California Historical Intensity Mapping Project (CHIMP) dataset of the maximum observed seismic intensity of shaking from the largest Californian earthquakes over the past 162 years. Previous comparisons between the maps for a constant V<sub>S30</sub> (shear-wave velcoity in the top 30 m of soil) of 760 m/s and CHIMP based on several metrics suggested that current maps overpredict shaking.</p> <p>The differences between the V<sub>S30</sub> at the CHIMP sites and the reference value of 760 m/s could amplify or deamplify the ground motions relative to the mapped values. We evaluate whether the V<sub>S30 </sub>at the CHIMP sites could cause a possible bias in the models. By comparison with the intensity data in CHIMP, we find that using site-specific V<sub>S30</sub> does not improve map performance, because the site corrections cause only minor differences from the original 2018 USGS hazard maps at the short periods (high frequencies) relevant to peak ground acceleration and hence MMI. The minimal differences reflect the fact that the nonlinear deamplification due to increased soil damping largely offsets the linear amplification due to low V<sub>S30</sub>. The net effects will be larger for longer periods relevant to tall buildings, where net amplification occurs. </p> <div> <p>Possible reasons for this discrepancy include limitations of the dataset, a bias in the hazard models, an over-estimation of the aleatory variability of the ground motion or that seismicity throughout the historical period has been lower than the long-term average, perhaps by chance due to the variability of earthquake recurrence. Resolving this discrepancy, which is also observed in Italy and Japan, could improve the performance of seismic hazard maps and thus earthquake safety for California and, by extension, worldwide. We also explore whether new nonergodic GMMs, with reduced aleatory variability, perform better than presently used ergodic GMMs compared to historical data.</p> </div> </div>


Author(s):  
Jun Gong ◽  
Xudong Zhi ◽  
Feng Fan ◽  
Shizhao Shen ◽  
Da Qaio ◽  
...  

To investigate the variability of ground motion characteristics (GMC) with the angle of seismic incidence (ASI) and the impact of seismic incident directionality on structural responses, first, a large-scale database of recorded ground motions was used to analyze the causes of GMC variability due to the seismic incident directionality effect (SIDE). Then a single-mass bi-degree-of-freedom system (SM-BDOF-S) with different types of symmetrical sections was selected to explore the influence mechanism of SIDE on the seismic responses. The results illustrated that the GMC has substantial variability with the ASI, which is independent of the earthquake source, propagation distance, and site condition, and exhibits complex random characteristics. Additionally, a classification method for ground motions is proposed based on this GMC variability to establish a criterion for selecting ground motions in seismic analysis considering the SIDE. Moreover, for an SM-BDOF-S, the response spectral plane is proposed to explain the transition behavior of spectral responses that are very similar among different stiffness ratios, but divergent for different types of ground motions. The influence of SIDE on structures is determined by their stiffness and stiffness ratio in the [Formula: see text]- and [Formula: see text]-directions, as well as the type of ground motion.


1973 ◽  
Vol 63 (3) ◽  
pp. 1025-1039
Author(s):  
Bruce M. Douglas ◽  
Thomas E. Trabert

abstract The coupled bending and torsional vibrations of a relatively symmetric 22-story reinforced concrete building in Reno, Nevada are studied. Analytical results are compared with observations obtained during the nuclear explosion FAULTLESS and to ambient vibration data. The fundamental periods of vibration observed during FAULTLESS were (TNS = 1.42, TEW = 1.81, TTORSION = 1.12 sec), and the calculated periods were (TNS = 2.14, TEW = 2.07, TTORSION = 1.90 sec). It was estimated that between 25 and 45 per cent of the total available nonstructural stiffness was required to explain the differences in the observed and calculated fundamental periods. Each floor diaphragm in the system was allowed three degrees of freedom-two translations and a rotation. It was found that coupled torsional motions can influence the response of structural elements near the periphery of the structure. Strong-motion structural response calculations comparing the simultaneous use of both components of horizontal ground motion to a single component analysis showed that the simultaneous application of both components of ground motion can significantly alter the response of lateral load-carrying elements. Differences of the order of 45 per cent were observed in the frames near the ends of the structure. Also, it was shown that the overall response of tall buildings is sensitive not only to the choice of input ground motion but also to the orientation of the structure with respect to the seismic waves.


1969 ◽  
Vol 59 (6) ◽  
pp. 2343-2370
Author(s):  
John A. Blume

abstract Typical data obtained thus far in the AEC nuclear test program on the response of highrise Las Vegas buildings to ground motion from distant nuclear events including Boxcar and Benham are presented, together with measured building response to distant earthquakes and to wind gusts. Major variations in response spectra are shown over the city for a specific event, from period band to period band at the same location for different events, and statistical parameters are shown for the randomness of spectral response. The peak response of tall buildings is shown for the top levels in translation and in orbital motion, and in the vertical plane with simultaneous multi-level measurements. The variation of peak modal response is shown with elapsed time, modal combinations are noted, and an example of time-history computed response is compared to measured response. It is shown that highrise Las Vegas buildings respond to ground motion with considerable amplification, that the fundamental modes tend to dominate the peak responses although there are exceptions, that there can be significant modification of loading conditions because of simultaneous motion in the two horizontal axes even though a building is symmetric, and that some building periods vary with amplitude and history of non-damaging prior response while others do not. In general there are indications that code earthquake design criteria are by no means conservative.


2019 ◽  
Vol 10 (1) ◽  
pp. 17 ◽  
Author(s):  
Marta Savor Novak ◽  
Damir Lazarevic ◽  
Josip Atalic ◽  
Mario Uros

Although post-earthquake observations identified spatial variation of ground motion (i.e., multiple-support excitation) as a frequent cause of the unfavorable response of long-span bridges, this phenomenon is often not taken into account in seismic design to simplify the calculation procedure. This study investigates the influence of multiple-support excitation accounting for coherency loss and wave-passage effects on the seismic response of reinforced concrete deck arch bridges of long spans founded on rock sites. Parametric numerical study was conducted using the time-history method, the response spectrum method, and a simplified procedure according to the European seismic standards. Results showed that multiple-support excitation had a detrimental influence on response of almost all analyzed bridges regardless of considered arch span. Both considered spatial variation effects, acting separately or simultaneously, proved to be very important, with their relative significance depending on the response values and arch locations analyzed and seismic records used. Therefore, it is suggested that all spatially variable ground-motion effects are taken into account in seismic analysis of similar bridges.


Sign in / Sign up

Export Citation Format

Share Document