Electrical Properties of Fresh Human Blood at 10 kHz–100 MHz

Author(s):  
Reo Takamatsu ◽  
Kenichi Higuchi ◽  
Tatsunori Suzuki ◽  
Dairoku Muramatsu
2019 ◽  
Vol 1402 ◽  
pp. 044073
Author(s):  
E Handoko ◽  
S Budi ◽  
R Fahdiran ◽  
S A Saptari ◽  
A Humairrah ◽  
...  

2005 ◽  
Vol 26 (7) ◽  
pp. 564-570 ◽  
Author(s):  
M. Sosa ◽  
J. Bernal-Alvarado ◽  
M. Jiménez-Moreno ◽  
J.C. Hernández ◽  
G. Gutiérrez-Juárez ◽  
...  

2010 ◽  
Vol 4 (3) ◽  
pp. 034101 ◽  
Author(s):  
S. Abdalla ◽  
S. S. Al-ameer ◽  
S. H. Al-Magaishi

2021 ◽  
Author(s):  
Edwin David Lavi

The ability to transport and store a large human blood inventory for transfusions is an essential requirement for medical institutions. Thus, there is an important need for rapid and low-cost characterization tools for analyzing the properties of human red blood cells (RBCs) while in storage. In this study, we investigate the ability to use dielectrophoresis (DEP) for measuring the storage-induced changes in RBC electrical properties. Fresh human blood was collected, suspended in K2-EDTA anticoagulant and stored in a blood bank refrigerator for a period of 20 days. Cells were removed from storage at 5-day intervals and subjected to a glutaraldehyde crosslinking reaction to “freeze” cells at their ionic equilibrium at that point in time and prevent ion leakage during DEP analysis. The DEP behavior of RBCs was analyzed in a high permittivity DEP buffer using a three-dimensional DEP chip (3DEP) and also compared to measurements taken with a 2D quadrupole electrode array. The DEP analysis confirms that RBC electrical property changes occur during storage and are only discernable with the use of the cell crosslinking reaction above a glutaraldehyde fixation concentration of 1.0 w/v%. In particular, cytoplasm conductivity was observed to decrease by more than 75% while the RBC membrane conductance was observed to increase by more than 1000% over a period of 20 days. These results show that the presented combination of chemical crosslinking and DEP can be used as rapid characterization tool for monitoring electrical properties changes of human red blood cells while subjected to refrigeration in blood bank storage.


Author(s):  
F. M. Ross ◽  
R. Hull ◽  
D. Bahnck ◽  
J. C. Bean ◽  
L. J. Peticolas ◽  
...  

We describe an investigation of the electrical properties of interfacial dislocations in strained layer heterostructures. We have been measuring both the structural and electrical characteristics of strained layer p-n junction diodes simultaneously in a transmission electron microscope, enabling us to correlate changes in the electrical characteristics of a device with the formation of dislocations.The presence of dislocations within an electronic device is known to degrade the device performance. This degradation is of increasing significance in the design and processing of novel strained layer devices which may require layer thicknesses above the critical thickness (hc), where it is energetically favourable for the layers to relax by the formation of misfit dislocations at the strained interfaces. In order to quantify how device performance is affected when relaxation occurs we have therefore been investigating the electrical properties of dislocations at the p-n junction in Si/GeSi diodes.


Author(s):  
A.M. Letsoalo ◽  
M.E. Lee ◽  
E.O. de Neijs

Semiconductor devices require metal contacts for efficient collection of electrical charge. The physics of these metal/semiconductor contacts assumes perfect, abrupt and continuous interfaces between the layers. However, in practice these layers are neither continuous nor abrupt due to poor nucleation conditions and the formation of interfacial layers. The effects of layer thickness, deposition rate and substrate stoichiometry have been previously reported. In this work we will compare the effects of a single deposition technique and multiple depositions on the morphology of indium layers grown on (100) CdTe substrates. The electrical characteristics and specific resistivities of the indium contacts were measured, and their relationships with indium layer morphologies were established.Semi-insulating (100) CdTe samples were cut from Bridgman grown single crystal ingots. The surface of the as-cut slices were mechanically polished using 5μm, 3μm, 1μm and 0,25μm diamond abrasive respectively. This was followed by two minutes immersion in a 5% bromine-methanol solution.


Author(s):  
J.P.S. Hanjra

Tin mono selenide (SnSe) with an energy gap of about 1 eV is a potential material for photovoltaic applications. Various authors have studied the structure, electronic and photoelectronic properties of thin films of SnSe grown by various deposition techniques. However, for practical photovoltaic junctions the electrical properties of SnSe films need improvement. We have carried out investigations into the properties of flash evaporated SnSe films. In this paper we report our results on the structure, which plays a dominant role on the electrical properties of thin films by TEM, SEM, and electron diffraction (ED).Thin films of SnSe were deposited by flash evaporation of SnSe fine powder prepared from high purity Sn and Se, onto glass, mica and KCl substrates in a vacuum of 2Ø micro Torr. A 15% HF + 2Ø% HNO3 solution was used to detach SnSe film from the glass and mica substrates whereas the film deposited on KCl substrate was floated over an ethanol water mixture by dissolution of KCl. The floating films were picked up on the grids for their EM analysis.


Physica ◽  
1954 ◽  
Vol 3 (7-12) ◽  
pp. 834-844 ◽  
Author(s):  
H FRITZSCHE ◽  
K LARKHOROVITZ

Sign in / Sign up

Export Citation Format

Share Document