Amniotic stromal stem cell‐loaded hydrogel repairs cardiac tissue in infarcted rat hearts via paracrine mediators

Author(s):  
Kashif Khan ◽  
Georges Makhoul ◽  
Bin Yu ◽  
Ghulam Jalani ◽  
Ida Derish ◽  
...  
2019 ◽  
Vol 125 (4) ◽  
pp. 414-430 ◽  
Author(s):  
Akitoshi Hara ◽  
Hiroki Kobayashi ◽  
Naoya Asai ◽  
Shigeyoshi Saito ◽  
Takahiro Higuchi ◽  
...  

Author(s):  
M. Ashraf ◽  
F. Thompson ◽  
S. Miki ◽  
P. Srivastava

Iron is believed to play an important role in the pathogenesis of ischemic injury. However, the sources of intracellular iron in myocytes are not yet defined. In this study we have attempted to localize iron at various cellular sites of the cardiac tissue with the ferrocyanide technique.Rat hearts were excised under ether anesthesia. They were fixed with coronary perfusion with 3% buffered glutaraldehyde made in 0.1 M cacodylate buffer pH 7.3. Sections, 60 μm in thickness, were cut on a vibratome and were incubated in the medium containing 500 mg of potassium ferrocyanide in 49.5 ml H2O and 0.5 ml concentrated HC1 for 30 minutes at room temperature. Following rinses in the buffer, tissues were dehydrated in ethanol and embedded in Spurr medium.The examination of thin sections revealed intense staining or reaction product in peroxisomes (Fig. 1).


Author(s):  
Caroline Struijk ◽  
Wouter Van Genechten ◽  
Peter Verdonk ◽  
Aaron J. Krych ◽  
Allan B. Dietz ◽  
...  

2021 ◽  
pp. 2004216
Author(s):  
Claudia C. dos Santos ◽  
Hajera Amatullah ◽  
Chirag M. Vaswani ◽  
Tatiana Maron-Gutierrez ◽  
Michael Kim ◽  
...  

Although mesenchymal stromal (stem) cell (MSC) administration attenuates sepsis-induced lung injury in pre-clinical models, the mechanism(s) of action and host immune system contributions to its therapeutic effects, remain elusive. We show that treatment with MSCs decreased expression of host-derived microRNA (miR)-193b-5p and increased expression of its target gene, the tight junctional protein occludin (Ocln), in lungs from septic mice. Mutating the Ocln 3′ UTR miR-193b-5p binding sequence impaired binding to Ocln mRNA. Inhibition of miR-193b-5p in human primary pulmonary microvascular endothelial cells (HPMECs) prevents tumor necrosis factor (TNF)-induced decrease in Ocln gene and protein expression and loss of barrier function. MSC conditioned media mitigated TNF-induced miR-193b-5p upregulation and Ocln downregulation in vitro. When administered in vivo, MSC conditioned media recapitulated the effects of MSC administration on pulmonary miR-193b-5p and Ocln expression. MiR-193b deficient mice were resistant to pulmonary inflammation and injury induced by LPS instillation. Silencing of Ocln in miR-193b deficient mice partially recovered the susceptibility to LPS-induced lung injury. In vivo inhibition of miR-193b-5p protected mice from endotoxin-induced lung injury. Finally, the clinical significance of these results was supported by the finding of increased miR-193b-5p expression levels in lung autopsy samples from Acute Respiratory Distress Syndrome patients who died with diffuse alveolar damage.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Kimimasa Tobita ◽  
Jason S Tchao ◽  
Jong Kim ◽  
Bo Lin ◽  
Johnny Huard ◽  
...  

We have previously shown that rat skeletal muscle derived stem cells differentiate into an immature cardiomyocyte (CM) phenotype within a 3-dimensional collagen gel engineered cardiac tissue (ECT). Here, we investigated whether human skeletal muscle derived progenitor cells (skMDCs) can differentiate into a CM phenotype within ECT similar to rat skeletal muscle stem cells and compared the human skMDC-ECT properties with ECT from human induced pluripotent stem cell (iPSc) derived CMs. SkMDCs differentiated into a cardiac muscle phenotype within ECT and exhibited spontaneous beating activity as early as culture day 4 and maintained their activity for more than 2 weeks. SkMDC-ECTs stained positive for cardiac specific troponin-T and troponin-I, and were co-localized with fast skeletal muscle myosin heavy chain (sk-fMHC) with a striated muscle pattern similar to fetal myocardium. The iPS-CM-ECTs maintained spontaneous beating activity for more than 2 weeks from ECT construction. iPS-CM stained positive for both cardiac troponin-T and troponin-I, and were also co-localized with sk-fMHC while the striated expression pattern of sk-fMHC was lost similar to post-natal immature myocardium. Connexin-43 protein was expressed in both engineered tissue types, and the expression pattern was similar to immature myocardium. The skMDC-ECT significantly upregulated expression of cardiac-specific genes compared to conventional 2D culture. SkMDC-ECT displayed cardiac muscle like intracellular calcium ion transients. The contractile force measurements demonstrated functional properties of fetal type myocardium in both ECTs. Our results suggest that engineered human cardiac tissue from skeletal muscle progenitor cells mimics developing fetal myocardium while the engineered cardiac tissue from inducible pluripotent stem cell-derived cardiomyocytes mimics post-natal immature myocardium.


Sign in / Sign up

Export Citation Format

Share Document