scholarly journals Normal human brainstem development in vivo: a quantitative fetal MRI study

Author(s):  
G. O. Dovjak ◽  
V. Schmidbauer ◽  
P. C. Brugger ◽  
G. M. Gruber ◽  
M. Diogo ◽  
...  
Keyword(s):  
Author(s):  
V. Knezović ◽  
G. Kasprian ◽  
A. Štajduhar ◽  
E. Schwartz ◽  
M. Weber ◽  
...  

Author(s):  
N. P. Dmitrieva

One of the most characteristic features of cancer cells is their ability to metastasia. It is suggested that the modifications of the structure and properties of cancer cells surfaces play the main role in this process. The present work was aimed at finding out what ultrastructural features apear in tumor in vivo which removal of individual cancer cells from the cell population can provide. For this purpose the cellular interactions in the normal human thyroid and cancer tumor of this gland electron microscopic were studied. The tissues were fixed in osmium tetroxide and were embedded in Araldite-Epon.In normal human thyroid the most common type of intercellular contacts was represented by simple junction formed by the parallelalignment of adjacent cell membranees leaving in between an intermembranes space 15-20 nm filled with electronlucid material (Fig. 1a). Sometimes in the basal part of cells dilatations of the intercellular space 40-50 nm wide were found (Fig. 1a). Here the cell surfaces may form single short microvilli.


1992 ◽  
Vol 67 (01) ◽  
pp. 060-062 ◽  
Author(s):  
J Harsfalvi ◽  
E Tarcsa ◽  
M Udvardy ◽  
G Zajka ◽  
T Szarvas ◽  
...  

Summaryɛ(γ-glutamyl)lysine isodipeptide has been detected in normal human plasma by a sensitive HPLC technique in a concentration of 1.9-3.6 μmol/1. Incubation of in vitro clotted plasma at 37° C for 12 h resulted in an increased amount of isodipeptide, and there was no further significant change when streptokinase was also present. Increased in vivo isodipeptide concentrations were also observed in hypercoagulable states and during fibrinolytic therapy.


Blood ◽  
1992 ◽  
Vol 80 (5) ◽  
pp. 1190-1198 ◽  
Author(s):  
SC Guba ◽  
CI Sartor ◽  
LR Gottschalk ◽  
YH Jing ◽  
T Mulligan ◽  
...  

Abstract Bone marrow (BM) stromal fibroblasts produce hematopoietic growth factors (HGFs) in response to inflammatory mediators such as tumor necrosis factor-alpha or interleukin-1 alpha (IL-1 alpha). In the absence of such inflammatory stimuli, production of HGFs by BM stromal cells has been problematic and controversial. In vivo, however, basal hematopoiesis maintains blood counts within a normal homeostatic range even in the absence of inflammation, and HGFs are required for progenitor cell differentiation in vitro. To better ascertain the contribution of BM stromal fibroblasts to basal hematopoiesis, we therefore studied HGF production in quiescent BM stromal fibroblasts by three sensitive assays: serum-free bioassay, enzyme-linked immunosorbent assay, and reverse transcriptase polymerase chain reaction. Stromal fibroblasts were cultured in the presence or absence of normal human serum to determine if serum factor(s) present in the noninflammatory (basal) state induce secretion of HGFs. Human serum was found to induce or enhance transcription and secretion of granulocyte- macrophage colony-stimulating factor (GM-CSF) and enhance secretion of constitutively expressed IL-6. In contrast, no secretion of either granulocyte-CSF (G-CSF) or IL-3 was found. These data indicate that factors in normal human serum are active in enhancing GM-CSF and IL-6 production by stromal fibroblasts and suggest that these growth factors contribute to the maintainance of normal, basal hematopoiesis in vivo.


2009 ◽  
Vol 37 (6) ◽  
pp. 1207-1213 ◽  
Author(s):  
Yan Qiu ◽  
Coralie Hoareau-Aveilla ◽  
Sebastian Oltean ◽  
Steven J. Harper ◽  
David O. Bates

Anti-angiogenic VEGF (vascular endothelial growth factor) isoforms, generated from differential splicing of exon 8, are widely expressed in normal human tissues but down-regulated in cancers and other pathologies associated with abnormal angiogenesis (cancer, diabetic retinopathy, retinal vein occlusion, the Denys–Drash syndrome and pre-eclampsia). Administration of recombinant VEGF165b inhibits ocular angiogenesis in mouse models of retinopathy and age-related macular degeneration, and colorectal carcinoma and metastatic melanoma. Splicing factors and their regulatory molecules alter splice site selection, such that cells can switch from the anti-angiogenic VEGFxxxb isoforms to the pro-angiogenic VEGFxxx isoforms, including SRp55 (serine/arginine protein 55), ASF/SF2 (alternative splicing factor/splicing factor 2) and SRPK (serine arginine domain protein kinase), and inhibitors of these molecules can inhibit angiogenesis in the eye, and splice site selection in cancer cells, opening up the possibility of using splicing factor inhibitors as novel anti-angiogenic therapeutics. Endogenous anti-angiogenic VEGFxxxb isoforms are cytoprotective for endothelial, epithelial and neuronal cells in vitro and in vivo, suggesting both an improved safety profile and an explanation for unpredicted anti-VEGF side effects. In summary, C-terminal distal splicing is a key component of VEGF biology, overlooked by the vast majority of publications in the field, and these findings require a radical revision of our understanding of VEGF biology in normal human physiology.


2005 ◽  
Vol 310 (1) ◽  
pp. 186-195 ◽  
Author(s):  
Mo K. Kang ◽  
Reuben H. Kim ◽  
Ki-Hyuk Shin ◽  
Weiguong Zhong ◽  
Kym F. Faull ◽  
...  

1994 ◽  
Vol 313 (2-3) ◽  
pp. 227-247 ◽  
Author(s):  
Derek R. Robinson ◽  
Kevin Goodall ◽  
Richard J. Albertini ◽  
J.Patrick O'Neill ◽  
Barry Finette ◽  
...  

2002 ◽  
Vol 195 (1) ◽  
pp. 85-98 ◽  
Author(s):  
Rodrig Marculescu ◽  
Trang Le ◽  
Paul Simon ◽  
Ulrich Jaeger ◽  
Bertrand Nadel

Most lymphoid malignancies are initiated by specific chromosomal translocations between immunoglobulin (Ig)/T cell receptor (TCR) gene segments and cellular proto-oncogenes. In many cases, illegitimate V(D)J recombination has been proposed to be involved in the translocation process, but this has never been functionally established. Using extra-chromosomal recombination assays, we determined the ability of several proto-oncogenes to target V(D)J recombination, and assessed the impact of their recombinogenic potential on translocation rates in vivo. Our data support the involvement of 2 distinct mechanisms: translocations involving LMO2, TAL2, and TAL1 in T cell acute lymphoblastic leukemia (T-ALL), are compatible with illegitimate V(D)J recombination between a TCR locus and a proto-oncogene locus bearing a fortuitous but functional recombination site (type 1); in contrast, translocations involving BCL1 and BCL2 in B cell non-Hodgkin’s lymphomas (B-NHL), are compatible with a process in which only the IgH locus breaks are mediated by V(D)J recombination (type 2). Most importantly, we show that the t(11;14)(p13;q32) translocation involving LMO2 is present at strikingly high frequency in normal human thymus, and that the recombinogenic potential conferred by the LMO2 cryptic site is directly predictive of the in vivo level of translocation at that locus. These findings provide new insights into the regulation forces acting upon genomic instability in B and T cell tumorigenesis.


Sign in / Sign up

Export Citation Format

Share Document