scholarly journals Reflections on the use of protein binders to study protein function in developmental biology

Author(s):  
Gustavo Aguilar ◽  
M. Alessandra Vigano ◽  
Markus Affolter ◽  
Shinya Matsuda

2019 ◽  
Author(s):  
Cansu Küey ◽  
Gabrielle Larocque ◽  
Nicholas I. Clarke ◽  
Stephen J. Royle

Tagging a protein-of-interest with GFP using genome editing is a popular approach to study protein function in cell and developmental biology. To avoid re-engineering cell lines or organisms in order to introduce additional tags, functionalized nanobodies that bind GFP can be used to extend the functionality of the GFP tag. We developed functionalized nanobodies, which we termed “dongles”, that could add, for example, an FKBP tag to a GFP-tagged protein-of-interest; enabling knocksideways experiments in GFP knock-in cell lines. The power of knocksideways is that it allows investigators to rapidly switch the protein from an active to an inactive state. We show that dongles allow for effective knocksideways of GFP-tagged proteins in genome-edited human cells. However, we discovered that nanobody binding to dynamin-2-GFP caused inhibition of dynamin function prior to knocksideways. While this limitation might be specific to the protein studied, it was significant enough to convince us not to pursue development of dongle technology further.



Antibodies ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 16 ◽  
Author(s):  
Gustavo Aguilar ◽  
Shinya Matsuda ◽  
M. Alessandra Vigano ◽  
Markus Affolter

Polyclonal and monoclonal antibodies have been invaluable tools to study proteins over the past decades. While indispensable for most biological studies including developmental biology, antibodies have been used mostly in fixed tissues or as binding reagents in the extracellular milieu. For functional studies and for clinical applications, antibodies have been functionalized by covalently fusing them to heterologous partners (i.e., chemicals, proteins or other moieties). Such functionalized antibodies have been less widely used in developmental biology studies. In the past few years, the discovery and application of small functional binding fragments derived from single-chain antibodies, so-called nanobodies, has resulted in novel approaches to study proteins during the development of multicellular animals in vivo. Expression of functionalized nanobody fusions from integrated transgenes allows manipulating proteins of interest in the extracellular and the intracellular milieu in a tissue- and time-dependent manner in an unprecedented manner. Here, we describe how nanobodies have been used in the field of developmental biology and look into the future to imagine how else nanobody-based reagents could be further developed to study the proteome in living organisms.



2010 ◽  
Vol 365 (1540) ◽  
pp. 557-566 ◽  
Author(s):  
Massimo Pigliucci

In a now classic paper published in 1991, Alberch introduced the concept of genotype–phenotype (G→P) mapping to provide a framework for a more sophisticated discussion of the integration between genetics and developmental biology that was then available. The advent of evo-devo first and of the genomic era later would seem to have superseded talk of transitions in phenotypic space and the like, central to Alberch's approach. On the contrary, this paper shows that recent empirical and theoretical advances have only sharpened the need for a different conceptual treatment of how phenotypes are produced. Old-fashioned metaphors like genetic blueprint and genetic programme are not only woefully inadequate but positively misleading about the nature of G→P, and are being replaced by an algorithmic approach emerging from the study of a variety of actual G→P maps. These include RNA folding, protein function and the study of evolvable software. Some generalities are emerging from these disparate fields of analysis, and I suggest that the concept of ‘developmental encoding’ (as opposed to the classical one of genetic encoding) provides a promising computational–theoretical underpinning to coherently integrate ideas on evolvability, modularity and robustness and foster a fruitful framing of the G→P mapping problem.



2021 ◽  
Vol 2021 (9) ◽  
pp. pdb.prot107151
Author(s):  
Olga Ossipova ◽  
Sergei Y. Sokol

The Xenopus embryo is a classical vertebrate model for molecular, cellular, and developmental biology. Despite many advantages of this organism, such as large egg size and external development, imaging of early embryonic stages is challenging because of nontransparent cytoplasm. Staining and imaging of thin tissue sections is one way to overcome this limitation. Here we describe a step-by-step protocol that combines cryosectioning of gelatin-embedded embryos with immunostaining and imaging. The purpose of this protocol is to examine various cellular and tissue markers after the manipulation of protein function. This protocol can be performed within a 2-d period and allows detection of many antigens by immunofluorescence.



Development ◽  
2018 ◽  
Vol 145 (2) ◽  
pp. dev148874 ◽  
Author(s):  
Stefan Harmansa ◽  
Markus Affolter


Author(s):  
Mircea Fotino

A new 1-MeV transmission electron microscope (Model JEM-1000) was installed at the Department of Molecular, Cellular and Developmental Biology of the University of Colorado in Boulder during the summer and fall of 1972 under the sponsorship of the Division of Research Resources of the National Institutes of Health. The installation was completed in October, 1972. It is installed primarily for the study of biological materials without many of the limitations hitherto unavoidable in standard transmission electron microscopy. Only the technical characteristics of the installation are briefly reviewed here. A more detailed discussion of the experimental program under way is being published elsewhere.



2020 ◽  
Vol 477 (7) ◽  
pp. 1219-1225 ◽  
Author(s):  
Nikolai N. Sluchanko

Many major protein–protein interaction networks are maintained by ‘hub’ proteins with multiple binding partners, where interactions are often facilitated by intrinsically disordered protein regions that undergo post-translational modifications, such as phosphorylation. Phosphorylation can directly affect protein function and control recognition by proteins that ‘read’ the phosphorylation code, re-wiring the interactome. The eukaryotic 14-3-3 proteins recognizing multiple phosphoproteins nicely exemplify these concepts. Although recent studies established the biochemical and structural basis for the interaction of the 14-3-3 dimers with several phosphorylated clients, understanding their assembly with partners phosphorylated at multiple sites represents a challenge. Suboptimal sequence context around the phosphorylated residue may reduce binding affinity, resulting in quantitative differences for distinct phosphorylation sites, making hierarchy and priority in their binding rather uncertain. Recently, Stevers et al. [Biochemical Journal (2017) 474: 1273–1287] undertook a remarkable attempt to untangle the mechanism of 14-3-3 dimer binding to leucine-rich repeat kinase 2 (LRRK2) that contains multiple candidate 14-3-3-binding sites and is mutated in Parkinson's disease. By using the protein-peptide binding approach, the authors systematically analyzed affinities for a set of LRRK2 phosphopeptides, alone or in combination, to a 14-3-3 protein and determined crystal structures for 14-3-3 complexes with selected phosphopeptides. This study addresses a long-standing question in the 14-3-3 biology, unearthing a range of important details that are relevant for understanding binding mechanisms of other polyvalent proteins.



2020 ◽  
Vol 64 (1) ◽  
pp. 135-153 ◽  
Author(s):  
Lauren Elizabeth Smith ◽  
Adelina Rogowska-Wrzesinska

Abstract Post-translational modifications (PTMs) are integral to the regulation of protein function, characterising their role in this process is vital to understanding how cells work in both healthy and diseased states. Mass spectrometry (MS) facilitates the mass determination and sequencing of peptides, and thereby also the detection of site-specific PTMs. However, numerous challenges in this field continue to persist. The diverse chemical properties, low abundance, labile nature and instability of many PTMs, in combination with the more practical issues of compatibility with MS and bioinformatics challenges, contribute to the arduous nature of their analysis. In this review, we present an overview of the established MS-based approaches for analysing PTMs and the common complications associated with their investigation, including examples of specific challenges focusing on phosphorylation, lysine acetylation and redox modifications.



2009 ◽  
Vol 138 (3) ◽  
pp. 421-422
Author(s):  
Antónia Monteiro


Sign in / Sign up

Export Citation Format

Share Document