scholarly journals Experimental parameter study for passive vortex generators on a 30% thick airfoil

Wind Energy ◽  
2018 ◽  
Vol 21 (9) ◽  
pp. 745-765 ◽  
Author(s):  
Daniel Baldacchino ◽  
Carlos Ferreira ◽  
Delphine De Tavernier ◽  
W.A. Timmer ◽  
G. J. W. van Bussel

2021 ◽  
Vol 11 (2) ◽  
pp. 579
Author(s):  
Max Schmid ◽  
Selina Hafner ◽  
Günter Scheffknecht

The conversion of biogenic residues to fuels and chemicals via gasification and synthesis processes is a promising pathway to replace fossil carbon. In this study, the focus is set on sewage sludge gasification for syngas production. Experiments were carried out in a 20 kW fuel input bubbling fluidized bed facility with steam and oxygen as gasification agent. In-situ produced sewage sludge ash was used as bed material. The sensitivity of the key operation parameters gasifier temperature, oxygen ratio, steam to carbon ratio, and the space velocity on the syngas composition (H2, CO, CO2, CH4, CxHy, H2S, COS, NH3, and tars) was determined. The results show that the produced syngas has high H2 and CO concentrations of up to 0.37 m3 m−3 and 0.18 m3 m−3, respectively, and is thus suitable for synthesis of fuels and chemicals. By adjusting the steam to carbon ratio, the syngas’ H2 to CO ratio can be purposely tailored by the water gas shift reaction for various synthesis products, e.g., synthetic natural gas (H2/CO = 3) or Fischer–Tropsch products (H2/CO = 2). Also, the composition and yields of fly ash and bed ash are presented. Through the gasification process, the cadmium and mercury contents of the bed ash were drastically reduced. The ash is suitable as secondary raw material for phosphorous or phosphate fertilizer production. Overall, a broad database was generated that can be used for process simulation and process design.





Author(s):  
Susanne-Marie Kirsch ◽  
Felix Welsch ◽  
Lukas Ehl ◽  
Nicolas Michaelis ◽  
Paul Motzki ◽  
...  

Abstract Elastocaloric cooling uses solid-state NiTi-based shape memory alloy (SMA) as a non-volatile cooling medium and enables a novel environment-friendly cooling technology without global warming potential. Due to the high specific latent heats activated by mechanical loading/unloading, large temperature changes can be generated in the material. Accompanied by a small required work input, a high coefficient of performance is achievable. Recently, a fully-functional and illustrative continuous operating elastocaloric fluid cooling system based on SMA is developed and realized, using a novel mechanical concept for individual loading and unloading of multiple SMA wire bundles. The fluid-based heat transfer system is designed for efficient heat exchange between the stationary heat source/sink and the SMA elements, operates without any additional heat transfer medium. Rotation frequency and fluid flow-rate are adjustable during operation, which allows adapting the operation point to power- or efficiency-optimized demands. The versatile placement of the in- and outlets allows different duct lengths and counter-flow or parallel-flow experiments. To investigate the air flow parameters at the in- and outlets, as well as the crossflow between the hot and cold side, a measurement system is developed and integrated. In this contribution, the first measurement results of the output temperatures for inlet air flow variation in combination with different rotation frequencies are presented.



2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Alexander Petutschnigg ◽  
Michael Stöckler ◽  
Florian Steinwendner ◽  
Julian Schnepps ◽  
Herwig Gütler ◽  
...  

Recently, the production of skis with wooden cores has increased due to changes in customer awareness concerning ecological issues and rising raw material costs for mineral oil resources. The preparation of ski surfaces is one of the main expense factors in the production of skis. Thus, one perspective of the AMER SPORTS CORPORATION is to treat wood surfaces with laser beams to develop new aesthetic possibilities in ski design. This study deals with different laser treatments for samples from various wood species: beech, ash, lime, and spruce. The parameters investigated are laser beam intensity and number of laser points on the surface. To evaluate the aesthetic changes, the CIELab color measurements were applied. Changes in the main wood components were observed by the Fourier transform infrared spectroscopy (FTIR) using an ATR (attenuated total reflectance) unit. The results show that the laser treatments on wood surfaces have an influence on wood color and the chemical composition. Especially the intensity of laser beams affects the color changes in different patterns for the parameters observed. These findings will be useful to develop innovative design possibilities of wood surfaces for ski cores as well as for further product design applications (e.g., mass customization).



2014 ◽  
Vol 966-967 ◽  
pp. 481-488 ◽  
Author(s):  
Alexander Mikloweit ◽  
Markus Bambach ◽  
Michael Pietryga ◽  
Gerhard Hirt

Roll bonding is a joining-by-forming process, in which two or more metals are permanently joined through pressure and plastic deformation, which causes the creation of a metallic bond. The bond formation is a complex process based on various process conditions in the joining zone, such as strain, normal pressure, temperature, strain rate, shear strain and surface condition. Since an individual variation and analysis of the influencing parameters is usually not possible during the rolling process, a specific experimental setup for the investigation of the joining mechanisms is necessary. In this paper, a testing procedure has been developed to determine the bond strength in joining-by-forming processes. The material combination chosen was AA2024/AA1050 as used in aircraft applications. AA2024 sheets are cladded with pure aluminum to improve the corrosion resistance. The performed experimental parameter study confirms the expected influencing factors and is used to determine parameters of a bonding model, which can be integrated in a finite element simulation.







Sign in / Sign up

Export Citation Format

Share Document