scholarly journals Fluorescence characterization of organic matter and fouling: Case study in a full‐scale reverse osmosis membrane treatment plant

2019 ◽  
Vol 92 (2) ◽  
pp. 161-172
Author(s):  
Lauren E. Bergman ◽  
Kimberly L. Jones ◽  
Jeanne M. VanBriesen
2011 ◽  
Vol 63 (4) ◽  
pp. 605-612 ◽  
Author(s):  
M. J. Farré ◽  
J. Keller ◽  
N. Holling ◽  
Y. Poussade ◽  
W. Gernjak

The formation of N-nitrosodimethylamine (NDMA) is of major concern among wastewater recycling utilities practicing disinfection with chloramines. The NDMA formation potential (FP) test is a simple and straightforward method to evaluate NDMA precursor concentrations in waters. In this paper we show the NDMA FP results of a range of tertiary wastewater treatment plants that are also the source for production of recycled water using an Ultrafiltration – Reverse Osmosis (UF-RO) membrane process. The results indicate that the NDMA FP of different source waters range from 350 to 1020±20 ng/L. The fate of these NDMA precursors was also studied across the different stages of two Advanced Water Treatment Plants (AWTP) producing recycled water. These results show that more than 98.5±0.5% of NDMA precursors are effectively removed by the Reverse Osmosis (RO) membranes used at the AWTPs. This drastically reduces any potential for re-formation of NDMA after the RO stage even if chloramines may be present (or added) there.


2018 ◽  
Vol 78 (7) ◽  
pp. 1517-1524 ◽  
Author(s):  
Riqiang Li ◽  
Jianxing Wang ◽  
Hongjiao Li

Abstract As a step toward bioaugmentation of coking wastewater treatment 45 bacteria strains were isolated from the activated sludge of a coking wastewater treatment plant (WWTP). Three strains identified as Bacillus cereus, Pseudomonas synxantha, and Pseudomonas pseudoaligenes exhibited high dehydrogenase activity which indicates a strong ability to degrade organic matter. Subsequently all three strains showed high naphthalene degradation abilities. Naphthalene is a refractory compound often found in coking wastewater. For B. cereus and P. synxantha the maximum naphthalene removal rates were 60.4% and 79.8%, respectively, at an initial naphthalene concentration of 80 mg/L, temperature of 30 °C, pH of 7, a bacteria concentration of 15% (V/V), and shaking speed of 160 r/min. For P. pseudoaligenes, the maximum naphthalene removal rate was 77.4% under similar conditions but at 35 °C.


2005 ◽  
Vol 68 (4) ◽  
pp. 801-807 ◽  
Author(s):  
SANDRA CASANI ◽  
TINA B. HANSEN ◽  
JAKOB CHRISTENSEN ◽  
SUSANNE KNØCHEL

Interest in reuse of process water from the food industry has reinforced the importance of controlling and monitoring the effectiveness and reliability of treatment systems regarding removal of organic matter and microorganisms. The ability of adenosine triphosphate bioluminescence, conductivity, turbidometry, absorbance, and multichannel fluorescence spectroscopy for indirectly monitoring the integrity of a reverse osmosis membrane when treating process water recovered from peeling in a shrimp processing line was evaluated. This study demonstrated that reverse osmosis was capable of removing bacteria (ca. 7 log CFU ml−1) to the levels required by the regulatory authorities for water recycling within the same food unit operation. Adenosine triphosphate and turbidometry showed a higher sensitivity for detecting compromising conditions at the treatment system (0.1% concentration of feed in permeate) and a better correlation with the aerobic count at lower levels than the other methods investigated. The sensitivity for assessing membrane integrity of conductivity and multichannel fluorescence was 1% of feed in permeate. Impact of feed variations was best leveled out in the permeates for turbidity measurements. Multichannel fluorescence spectroscopy may require laborious calibration procedures and expertise regarding data analysis and interpretation of results, which are not always available in food industries. Absorbance did not respond to changes in membrane integrity and was not well correlated to the aerobic count because of the poor sensitivity of this method for these purposes.


Author(s):  
Man Djun Lee ◽  
Pui San Lee

This chapter gives an overview about reverse osmosis membrane desalination technology and process. Desalination process can be considered as one of the crucial processes in obtaining fresh water to meet the increasing fresh water demand throughout the world. Desalination process begins with the intake of seawater or brackish water. The intake system usually comprises a pump and piping system. Then, the seawater goes through pre-treatment process. From there, the treated seawater will go through desalination process. The most widely used desalination is membrane desalination utilizing reverse osmosis membrane. After desalination process, the fresh water will go through more filtration and a series of post-treatment. Post-treatment consists of conditioning and stabilizing the water for distribution. This chapter concludes with a case study to illustrate the operation and sustainability of a small-scale desalination plant that utilizes brackish city polluted water as source.


Data in Brief ◽  
2020 ◽  
Vol 33 ◽  
pp. 106487
Author(s):  
Jorge Senán-Salinas ◽  
Junkal Landaburu-Aguirre ◽  
Alberto Blanco ◽  
Raquel García-Pacheco ◽  
Eloy García-Calvo

Sign in / Sign up

Export Citation Format

Share Document