Electrochemical oxidation of chloramphenicol with lead dioxide‐surfactant composites

2021 ◽  
Author(s):  
Olesia Shmychkova ◽  
Svitlana Zahorulko ◽  
Tatiana Luk'yanenko ◽  
Alexander Velichenko
1989 ◽  
Vol 42 (9) ◽  
pp. 1527 ◽  
Author(s):  
TH Randle ◽  
AT Kuhn

Lead dioxide is a strong oxidizer in sulfuric acid, consequently electrochemical oxidation of solution species at a lead dioxide anode may occur by a two-step, C-E process (chemical oxidation of solution species by PbO2 followed by electrochemical regeneration of the reduced lead dioxide surface). The maximum rate of each step has been determined in sulfuric acid for specified lead dioxide surfaces and compared with the rates observed for the electrochemical oxidation of cerium(III) and manganese(II) on the same electrode surfaces. While the rate of electrochemical oxidation of a partially reduced PbO2 surface may be sufficient to support the observed rates of CeIII and MnII oxidation at the lead dioxide anode, the rate of chemical reaction between PbO2 and the reducing species is not. Hence it is concluded that the lead dioxide electrode functions as a simple, 'inert' electron-transfer agent during the electrochemical oxidation of CellI and MnII in sulfuric acid. In general, it will most probably be the rate of the chemical step which determines the feasibility or otherwise of the C-E mechanism.


2016 ◽  
Vol 213 ◽  
pp. 358-367 ◽  
Author(s):  
Qiongfang Zhuo ◽  
Meiqing Luo ◽  
Qingwei Guo ◽  
Gang Yu ◽  
Shubo Deng ◽  
...  

2019 ◽  
Vol 84 (2) ◽  
pp. 187-198 ◽  
Author(s):  
Olesia Shmychkova ◽  
Tatiana Luk’yanenko ◽  
Larisa Dmirtikova ◽  
Alexander Velichenko

An investigation is reported on lead dioxide electrodeposition from methanesulfonate electrolytes additionally containing Ni2+ ions. It is shown that lead dioxide electrodes micromodified by nickel have different physico-chemical properties vs. nonmodified PbO2-anodes that are formed during the deposition. Electrocatalytical reactivity of electrodes involved in comparison to both the oxygen evolution, as well as to the electrooxidation of 2,4- dichlorophenoxyacetic (2,4-D) acid is investigated. Processes of electrochemical oxidation of 2,4-D on various materials occur qualitatively with the same mechanism and differ only in the rate. It is shown that the Ni-PbO2-anode possesses the highest electrocatalytic activity: the destruction rate of 2,4-D on it increases in 1.5 times in comparison with nonmodified lead dioxide. The COD of a 0.4 mM solution of 2,4-D, determined by the dichromate method, is 90.0 mg dm-3 which is 94 % of the theoretical value.


2020 ◽  
Vol 7 ◽  
pp. 7
Author(s):  
Mattia Pierpaoli ◽  
Michał Rycewicz ◽  
Aneta Łuczkiewicz ◽  
Sylwia Fudala-Ksiązek ◽  
Robert Bogdanowicz ◽  
...  

Landfill leachate possesses high concentrations of ammonia, micropollutants, and heavy metals, and are characterised for low biodegradability. For this reason, conventional treatment technologies may result ineffective for complete pollutant removal. Electrochemical oxidation allows most of the of recalcitrant pollutants to be oxidised effectively within an easy operational and acceptable retention time, without the need to provide additional chemicals, and without producing waste materials. The mineralisation efficiency and electrode durability depend on the nature of the electrode material. The conventionally adopted anodes can contain critical raw materials (CRMs), and are subject to extreme corrosion conditions. CRM-free electrodes, such as carbon and graphite-based, exhibit a lower efficiency, and are subject to faster deactivation, or, as for lead-dioxide-based electrodes, can constitute a hazard due to the release into the effluent of the coating corrosion products. In this study, the relationship between electrode type, CRM content, and the removal efficiencies of organic compounds and ammonium-nitrogen (N-NH4) was investigated. Material criticality was estimated by the supply risk with economic importance indexes reported in the 2017 EU CRM List. The COD and N-NH4 removal efficiencies were obtained from a literature analysis of 25 publications. The results show that, while single and multi-oxide-coated electrodes may contain low amounts of CRM, but with limited efficiency, boron-doped diamonds (BDD) may constitute the best compromise in terms of a reduced content of CRM and a high mineralisation efficiency.


Sign in / Sign up

Export Citation Format

Share Document