Decolorization of Textile Wastewater by Electro‐oxidation Process using Different Anode Materials: Statistical Optimization

2021 ◽  
Author(s):  
Nouha Bakaraki Turan ◽  
Hanife Sari Erkan ◽  
Fatih Ilhan ◽  
Guleda Onkal Engin
2020 ◽  
Vol 203 ◽  
pp. 104027
Author(s):  
Parminder Kaur ◽  
Monzur A. Imteaz ◽  
Mika Sillanpää ◽  
Vikas Kumar Sangal ◽  
Jai Prakash Kushwaha

2019 ◽  
Vol 22 (1) ◽  
pp. 31-36
Author(s):  
Forqan Mohammed ◽  
Khalid M. Mousa

In this study sunlight and UV radiation were used to compare the efficiency of decolorization of textile wastewater containing brilliant reactive red dye K-2BP (λmax = 534 nm) by the advanced oxidation process (AOP) using (H2O2/sunlight, H2O2/UV, H2O2/TiO2/sunlight, and H2O2/TiO2/UV). The results studied the effect of solution pH, applied H2O2 concentration, TiO2 concentration (nanoparticle), and initial dye concentration were studied. The experimental results showed that decolorization percentage with H2O2/sunlight and TiO2/H2O2/sunlight under the following conditions: - reaction time 150 of minutes, [ 500 ppm] H2O2, [100 ppm] TiO2, pH=3, initial dye concentration =15 ppm and at ambient temperature were 95.7% and 98.42% respectively. For the same conditions using H2O2/UV, H2O2/TiO2 /UV, the percentage of decolorization were 97.85% and 96.33% respectively. The results also indicated that the sunlight is more economic and cost-effective than UV radiation.


2021 ◽  
Vol 874 ◽  
pp. 155-164
Author(s):  
Herlina ◽  
Muhammad Ali Zulfikar ◽  
Buchari

Recently, the increased use of antibiotics in the environment has been studied and one of them is amoxicillin. Amoxicillin (AMX) is a pharmaceutical product that can become waste due to the continuous use and released into the ecosystem even at low concentrations. The electro-oxidation process is one of the electrochemical methods used to destruct the existence of antibiotics because the process is relatively fast and inexpensive. Platinum electrode and platinum modified cobalt electrodes are used for amoxicillin electro-oxidation at the pH of 2 - 7. The range of this amoxicillin's pH was achieved by the pKa's values of the amoxicillin and measured using a UV/Vis spectrophotometer. Electron transfer during the amoxicillin electro-oxidation process with these electrodes is measured by linear sweep voltammetry. The results obtained during the electro-oxidation process showed that electron transfer of amoxicillin was 1, with a Nernstian factor of 0.0521 V/pH for platinum electrode and platinum modified cobalt electrodes, Pt/Co(OH)2 and Pt/Co respectively with values of 0.0506 V/pH and 0.0673 V/pH.


Sign in / Sign up

Export Citation Format

Share Document