The flexural vibration of V shaped atomic force microscope cantilevers by using the Timoshenko beam theory

Author(s):  
A. Sadeghi
2011 ◽  
Vol 133 (1) ◽  
Author(s):  
Dianlong Yu ◽  
Jihong Wen ◽  
Honggang Zhao ◽  
Yaozong Liu ◽  
Xisen Wen

The flexural vibration band gap in a periodic fluid-conveying pipe system is studied based on the Timoshenko beam theory. The band structure of the flexural wave is calculated with a transfer matrix method to investigate the gap frequency range. The effects of the rotary inertia and shear deformation on the gap frequency range are considered. The frequency response of finite periodic pipe is calculated with a finite element method to validate the gap frequency ranges.


2011 ◽  
Vol 110-116 ◽  
pp. 4888-4892
Author(s):  
Ali Sadeghi

The resonant frequency of flexural vibrations for an atomic force microscope (AFM) cantilever has been investigated using the Euler-Bernoulli beam theory. The results show that for flexural vibration the frequency is sensitive to the contact position, the first frequency is sensitive only to the lower contact stiffness, but high order modes are sensitive in a larger range of contact stiffness. By increasing the height H, for a limited range of contact stiffness the sensitivity to the contact stiffness increases. This sensitivity controls the image contrast, or image quality. Furthermore, by increasing the angle between the cantilever and sample surface, the frequency decreases.


AIAA Journal ◽  
2004 ◽  
Vol 42 (4) ◽  
pp. 833-839 ◽  
Author(s):  
Jen-Fang Yu ◽  
Hsin-Chung Lien ◽  
B. P. Wang

Sign in / Sign up

Export Citation Format

Share Document