Protein Kinase C-Stimulated Formation of Ethanolamine from Phosphatidylethanolamine Involves a Protein Phosphorylation Mechanism: Negative Regulation by p21 Ras Protein

2000 ◽  
Vol 377 (1) ◽  
pp. 171-177 ◽  
Author(s):  
Eva Deli ◽  
Zoltan Kiss
1993 ◽  
Vol 268 (36) ◽  
pp. 27363-27370
Author(s):  
R S Eisenstein ◽  
P T Tuazon ◽  
K L Schalinske ◽  
S A Anderson ◽  
J A Traugh

1989 ◽  
Vol 260 (1) ◽  
pp. 157-161 ◽  
Author(s):  
B D Price ◽  
J D H Morris ◽  
C J Marshall ◽  
A Hall

The effect of scrape-loaded [Val-12]p21ras on agonist-stimulated phosphatidylinositol 4,5-bisphosphate (PIP2) turnover in Swiss-3T3 cells was studied. Previously [Morris, Price, Lloyd, Marshall & Hall (1989) Oncogene 4, 27-31] we demonstrated that [Val-12]p21ras activates protein kinase C within 10 min of scrape loading. Here, we show that [Val-12]p21ras inhibits bombesin and platelet-derived growth factor-stimulated PIP2 breakdown 1.5-4 h after scrape loading. This effect persisted for at least 18 h and could be mimicked in control cells by activation of protein kinase C with 12-O-tetradecanoyl 13-acetate (TPA) 15 min prior to ligand stimulation. When protein kinase C was down-regulated by chronic TPA treatment, [Val-12]p21ras was no longer able to inhibit agonist-stimulated inositol phosphate production. These results indicate that changes in inositol phosphate levels caused by ras protein are probably due to activation of protein kinase C and not to an interaction of ras with phospholipase C.


1992 ◽  
Vol 285 (3) ◽  
pp. 973-978 ◽  
Author(s):  
P M Jones ◽  
S J Persaud ◽  
S L Howell

Increasing the cytosolic Ca2+ concentration of electrically permeabilized rat islets of Langerhans caused rapid increases in insulin secretion and in 32P incorporation into islet proteins. However, the secretory responsiveness of permeabilized islets was relatively transient, with insulin secretion approaching basal levels within 20-30 min despite the continued presence of stimulatory concentrations of Ca2+. The loss of Ca2(+)-induced insulin secretion was accompanied by a marked reduction in Ca2(+)-dependent protein phosphorylation, but not in cyclic AMP-dependent protein phosphorylation. Similarly, permeabilized islets which were no longer responsive to Ca2+ were able to mount appropriate secretory responses to cyclic AMP and to a protein kinase C-activating phorbol ester. These results suggest that prolonged exposure to elevated cytosolic Ca2+ concentrations results in a specific desensitization of the secretory mechanism to Ca2+, perhaps as a result of a decrease in Ca2(+)-dependent kinase activity. Furthermore, these studies suggest that secretory responses of B-cells to cyclic AMP and activators of protein kinase C are not dependent upon the responsiveness of the cells to changes in cytosolic Ca2+.


1990 ◽  
Vol 58 (3) ◽  
pp. 761-765 ◽  
Author(s):  
T J Baldwin ◽  
S F Brooks ◽  
S Knutton ◽  
H A Manjarrez Hernandez ◽  
A Aitken ◽  
...  

1990 ◽  
Vol 258 (2) ◽  
pp. C227-C233 ◽  
Author(s):  
J. A. Cohn

T84 cell monolayers were used to study the cholinergic regulation of protein phosphorylation in epithelial cells. When T84 cell monolayers are labeled with 32Pi and stimulated with carbachol, six proteins exhibit altered phosphorylation. The most prominent response is a fivefold increase in labeling of p83, an acidic protein of Mr 83,000. Increasing labeling of p83 parallels stimulated secretion with respect to the onset of agonist action, agonist potency, and antagonism by atropine. However, the p83 and secretory responses differ in that the p83 response is more sustained. When T84 cell fractions are incubated with [gamma-32P]ATP, Ca2(+)-phospholipid stimulates p83 labeling. Phosphorylation of p83 also occurs when a T84 cell extract is incubated with purified protein kinase C and when intact cells are exposed to phorbol myristate acetate. p83 does not become phosphorylated in cell fractions incubated with adenosine 3',5'-cyclic monophosphate (cAMP) or in monolayers stimulated with agonists acting via cAMP. Thus carbachol stimulates the phosphorylation of an endogenous substrate for protein kinase C in T84 cells. The duration of this phosphorylation response suggests that protein kinase C may mediate a sustained response to carbachol, possibly acting to limit the duration of stimulated secretion.


Sign in / Sign up

Export Citation Format

Share Document