Protein kinase C mediates cholinergically regulated protein phosphorylation in a Cl(-)-secreting epithelium

1990 ◽  
Vol 258 (2) ◽  
pp. C227-C233 ◽  
Author(s):  
J. A. Cohn

T84 cell monolayers were used to study the cholinergic regulation of protein phosphorylation in epithelial cells. When T84 cell monolayers are labeled with 32Pi and stimulated with carbachol, six proteins exhibit altered phosphorylation. The most prominent response is a fivefold increase in labeling of p83, an acidic protein of Mr 83,000. Increasing labeling of p83 parallels stimulated secretion with respect to the onset of agonist action, agonist potency, and antagonism by atropine. However, the p83 and secretory responses differ in that the p83 response is more sustained. When T84 cell fractions are incubated with [gamma-32P]ATP, Ca2(+)-phospholipid stimulates p83 labeling. Phosphorylation of p83 also occurs when a T84 cell extract is incubated with purified protein kinase C and when intact cells are exposed to phorbol myristate acetate. p83 does not become phosphorylated in cell fractions incubated with adenosine 3',5'-cyclic monophosphate (cAMP) or in monolayers stimulated with agonists acting via cAMP. Thus carbachol stimulates the phosphorylation of an endogenous substrate for protein kinase C in T84 cells. The duration of this phosphorylation response suggests that protein kinase C may mediate a sustained response to carbachol, possibly acting to limit the duration of stimulated secretion.

1993 ◽  
Vol 268 (36) ◽  
pp. 27363-27370
Author(s):  
R S Eisenstein ◽  
P T Tuazon ◽  
K L Schalinske ◽  
S A Anderson ◽  
J A Traugh

1992 ◽  
Vol 285 (3) ◽  
pp. 973-978 ◽  
Author(s):  
P M Jones ◽  
S J Persaud ◽  
S L Howell

Increasing the cytosolic Ca2+ concentration of electrically permeabilized rat islets of Langerhans caused rapid increases in insulin secretion and in 32P incorporation into islet proteins. However, the secretory responsiveness of permeabilized islets was relatively transient, with insulin secretion approaching basal levels within 20-30 min despite the continued presence of stimulatory concentrations of Ca2+. The loss of Ca2(+)-induced insulin secretion was accompanied by a marked reduction in Ca2(+)-dependent protein phosphorylation, but not in cyclic AMP-dependent protein phosphorylation. Similarly, permeabilized islets which were no longer responsive to Ca2+ were able to mount appropriate secretory responses to cyclic AMP and to a protein kinase C-activating phorbol ester. These results suggest that prolonged exposure to elevated cytosolic Ca2+ concentrations results in a specific desensitization of the secretory mechanism to Ca2+, perhaps as a result of a decrease in Ca2(+)-dependent kinase activity. Furthermore, these studies suggest that secretory responses of B-cells to cyclic AMP and activators of protein kinase C are not dependent upon the responsiveness of the cells to changes in cytosolic Ca2+.


1990 ◽  
Vol 10 (6) ◽  
pp. 2983-2990
Author(s):  
J C Lacal ◽  
A Cuadrado ◽  
J E Jones ◽  
R Trotta ◽  
D E Burstein ◽  
...  

Expression of the N-ras oncogene under the control of the glucocorticoid-responsive promoter in the pheochromocytoma cell line UR61, a subline of PC-12 cells, has been used to investigate the differentiation process to neuronal cells triggered by ras oncogenes (I. Guerrero, A. Pellicer, and D. E. Burstein, Biochem. Biophys. Res. Commun. 150:1185-1192, 1988). Using ras-inducible cell lines, we observed that expression of the oncogenic N-ras p21 protein interferes with the ability of phorbol esters to induce downregulation of protein kinase C. This effect was associated with the appearance of immunologically detectable protein kinase C as well as the activity of the enzyme as analyzed either by binding of [3H]phorbol-12,13-dibutyrate in intact cells or by in vitro kinase activity. These results indicate a relationship between ras p21 and protein kinase C in neuronal differentiation in this model system. Comparison to the murine fibroblast system suggests that this relationship may be functional.


1995 ◽  
Vol 269 (6) ◽  
pp. G874-G882 ◽  
Author(s):  
C. L. Sears ◽  
F. Firoozmand ◽  
A. Mellander ◽  
F. G. Chambers ◽  
I. G. Eromar ◽  
...  

The involvement of tyrosine phosphorylation in the regulation of epithelial cell Cl- secretion is unknown. Therefore, the purpose of these studies was to determine if tyrosine kinase activation was involved in the regulation of Cl- secretion, using the tyrosine kinase inhibitors, genistein and tyrphostin 47, and human intestinal epithelial cells (T84 cells) as an intestinal Cl- secretory model. Genistein rapidly but reversibly stimulated sustained apical Cl- secretion in monolayers of T84 cells without increasing intracellular cyclic nucleotides or Ca2+ levels. Tyrphostin 47 also stimulated Cl- secretion in T84 monolayers, although it was short-lived. Transfection experiments in 3T3 fibroblasts and IEC-6 intestinal cells utilizing wild-type cystic fibrosis transmembrane conductance regulator (CFTR) showed that genistein and tyrphostin 47 stimulated 125I efflux only in CFTR-transfected cells and not in CFTR-negative cells. Thus genistein- and tyrphostin 47-stimulated Cl- secretion involved CFTR. Genistein also acted synergistically with the Ca(2+)- and protein kinase C-dependent acetylcholine analogue, carbachol, to stimulate Cl- secretion in T84 monolayers. However, the Cl- secretory response to saturating concentrations of the adenosine 3',5'-cyclic monophosphate (cAMP) agonist, forskolin, or the guanosine 3',5'-cyclic monophosphate (cGMP) agonist, Escherichia coli heat-stable enterotoxin, was not further enhanced by genistein. Although the mechanism of activation of Cl- secretion is unclear, these data suggest that tyrosine kinase activity limits basal Cl- secretion in T84 cells and that inhibition of T84 cell tyrosine kinase(s) stimulates apical membrane Cl- secretion, most likely through activation of the CFTR-Cl- channel. Moreover, genistein does not itself act through cAMP or cGMP elevation but appears to share a common Cl- secretory pathway with cyclic nucleotide-dependent agonists, whereas it augments the secretory responses to a Ca(2+)- and protein kinase C-dependent agonist.


1990 ◽  
Vol 58 (3) ◽  
pp. 761-765 ◽  
Author(s):  
T J Baldwin ◽  
S F Brooks ◽  
S Knutton ◽  
H A Manjarrez Hernandez ◽  
A Aitken ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document