Detection and Expression of the 70 kDa Heat Shock Protein ssb1p at Different Temperatures in Saccharomyces cerevisiae

1995 ◽  
Vol 213 (2) ◽  
pp. 484-489 ◽  
Author(s):  
H. Iwahashi ◽  
Y. Wu ◽  
R.M. Tanguay
1991 ◽  
Vol 11 (5) ◽  
pp. 2905-2908 ◽  
Author(s):  
W R Widner ◽  
Y Matsumoto ◽  
R B Wickner

The 20S RNA of Saccharomyces cerevisiae is a single-stranded, circular RNA virus. A previous study suggested that this RNA is part of a 32S ribonucleoprotein particle, being associated with multiple copies of a 23-kilodalton protein. We show here that this protein is, in fact, the chromosome-encoded heat shock protein Hsp26. Furthermore, it is apparently not associated with 20S RNA and plays no obvious role in the life cycle of the virus.


1989 ◽  
Vol 9 (11) ◽  
pp. 5265-5271 ◽  
Author(s):  
R E Susek ◽  
S L Lindquist

Analysis of the cloned gene confirms that hsp26 of Saccharomyces cerevisiae is a member of the small heat shock protein superfamily. Previous mutational analysis failed to demonstrate any function for the protein. Further experiments presented here demonstrate that hsp26 has no obvious regulatory role and no major effect on thermotolerance. It is possible that the small heat shock protein genes originated as primitive viral or selfish DNA elements.


PLoS ONE ◽  
2019 ◽  
Vol 14 (9) ◽  
pp. e0222723
Author(s):  
Arnab Bandyopadhyay ◽  
Indrani Bose ◽  
Krishnananda Chattopadhyay

1991 ◽  
Vol 11 (5) ◽  
pp. 2905-2908
Author(s):  
W R Widner ◽  
Y Matsumoto ◽  
R B Wickner

The 20S RNA of Saccharomyces cerevisiae is a single-stranded, circular RNA virus. A previous study suggested that this RNA is part of a 32S ribonucleoprotein particle, being associated with multiple copies of a 23-kilodalton protein. We show here that this protein is, in fact, the chromosome-encoded heat shock protein Hsp26. Furthermore, it is apparently not associated with 20S RNA and plays no obvious role in the life cycle of the virus.


Biomedicines ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 629
Author(s):  
Gabriel Zazeri ◽  
Ana Paula Ribeiro Povinelli ◽  
Marcelo de Freitas Lima ◽  
Marinônio Lopes Cornélio

In this work, for the first time, details of the complex formed by heat shock protein 70 (HSP70) independent nucleotide binding domain (NBD) and piperine were characterized through experimental and computational molecular biophysical methods. Fluorescence spectroscopy results revealed positive cooperativity between the two binding sites. Circular dichroism identified secondary conformational changes. Molecular dynamics along with molecular mechanics Poisson Boltzmann surface area (MM/PBSA) reinforced the positive cooperativity, showing that the affinity of piperine for NBD increased when piperine occupied both binding sites instead of one. The spontaneity of the complexation was demonstrated through the Gibbs free energy (∆G < 0 kJ/mol) for different temperatures obtained experimentally by van’t Hoff analysis and computationally by umbrella sampling with the potential of mean force profile. Furthermore, the mean forces which drove the complexation were disclosed by van’t Hoff and MM/PBSA as being the non-specific interactions. In conclusion, the work revealed characteristics of NBD and piperine interaction, which may support further drug discover studies.


1996 ◽  
Vol 134 (3) ◽  
pp. 603-613 ◽  
Author(s):  
B Schilke ◽  
J Forster ◽  
J Davis ◽  
P James ◽  
W Walter ◽  
...  

SSH1, a newly identified member of the heat shock protein (hsp70) multigene family of the budding yeast Saccharomyces cerevisiae, encodes a protein localized to the mitochondrial matrix. Deletion of the SSH1 gene results in extremely slow growth at 23 degrees C or 30 degrees C, but nearly wild-type growth at 37 degrees C. The matrix of the mitochondria contains another hsp70, Ssc1, which is essential for growth and required for translocation of proteins into mitochondria. Unlike SSC1 mutants, an SSH1 mutant showed no detectable defects in import of several proteins from the cytosol to the matrix compared to wild type. Increased expression of Ssc1 partially suppressed the cold-sensitive growth defect of the SSH1 mutant, suggesting that when present in increased amounts, Ssc1 can at least partially carry out the normal functions of Ssh1. Spontaneous suppressors of the cold-sensitive phenotype of an SSH1 null mutant were obtained at a high frequency at 23 degrees C, and were all found to be respiration deficient. 15 of 16 suppressors that were analyzed lacked mitochondrial DNA, while the 16th had reduced amounts. We suggest that Ssh1 is required for normal mitochondrial DNA replication, and that disruption of this process in ssh1 cells results in a defect in mitochondrial function at low temperatures.


2004 ◽  
Vol 23 (3) ◽  
pp. 638-649 ◽  
Author(s):  
Martin Haslbeck ◽  
Nathalie Braun ◽  
Thusnelda Stromer ◽  
Bettina Richter ◽  
Natascha Model ◽  
...  

Genetics ◽  
1992 ◽  
Vol 131 (4) ◽  
pp. 821-832 ◽  
Author(s):  
K Kawakami ◽  
B K Shafer ◽  
D J Garfinkel ◽  
J N Strathern ◽  
Y Nakamura

Abstract Temperature-sensitive mutants of Saccharomyces cerevisiae were isolated by insertional mutagenesis using the HIS3 marked retrotransposon TyH3HIS3. In such mutants, the TyHIS3 insertions are expected to identify loci which encode genes essential for cell growth at high temperatures but dispensable at low temperatures. Five mutations were isolated and named hit for high temperature growth. The hit1-1 mutation was located on chromosome X and conferred the pet phenotype. Two hit2 mutations, hit2-1 and hit2-2, were located on chromosome III and caused the deletion of the PET18 locus which has been shown to encode a gene required for growth at high temperatures. The hit3-1 mutation was located on chromosome VI and affected the CDC26 gene. The hit4-1 mutation was located on chromosome XIII. These hit mutations were analyzed in an attempt to identify novel genes involved in the heat shock response. The hit1-1 mutation caused a defect in synthesis of a 74-kD heat shock protein. Western blot analysis revealed that the heat shock protein corresponded to the SSC1 protein, a member of the yeast hsp70 family. In the hit1-1 mutant, the TyHIS3 insertion caused a deletion of a 3-kb DNA segment between the delta 1 and delta 4 sequences near the SUP4 locus. The 1031-bp wild-type HIT1 DNA which contained an open reading frame encoding a protein of 164 amino acids and the AGG arginine tRNA gene complemented all hit1-1 mutant phenotypes, indicating that the mutant phenotypes were caused by the deletion of these genes. The pleiotropy of the HIT1 locus was analyzed by constructing a disruption mutation of each gene in vitro and transplacing it to the chromosome. This analysis revealed that the HIT1 gene essential for growth at high temperatures encodes the 164-amino acid protein. The arginine tRNA gene, named HSX1, is essential for growth on a nonfermentable carbon source at high temperatures and for synthesis of the SSC1 heat shock protein.


Sign in / Sign up

Export Citation Format

Share Document