scholarly journals Is 20S RNA naked?

1991 ◽  
Vol 11 (5) ◽  
pp. 2905-2908 ◽  
Author(s):  
W R Widner ◽  
Y Matsumoto ◽  
R B Wickner

The 20S RNA of Saccharomyces cerevisiae is a single-stranded, circular RNA virus. A previous study suggested that this RNA is part of a 32S ribonucleoprotein particle, being associated with multiple copies of a 23-kilodalton protein. We show here that this protein is, in fact, the chromosome-encoded heat shock protein Hsp26. Furthermore, it is apparently not associated with 20S RNA and plays no obvious role in the life cycle of the virus.

1991 ◽  
Vol 11 (5) ◽  
pp. 2905-2908
Author(s):  
W R Widner ◽  
Y Matsumoto ◽  
R B Wickner

The 20S RNA of Saccharomyces cerevisiae is a single-stranded, circular RNA virus. A previous study suggested that this RNA is part of a 32S ribonucleoprotein particle, being associated with multiple copies of a 23-kilodalton protein. We show here that this protein is, in fact, the chromosome-encoded heat shock protein Hsp26. Furthermore, it is apparently not associated with 20S RNA and plays no obvious role in the life cycle of the virus.


1989 ◽  
Vol 9 (11) ◽  
pp. 5265-5271 ◽  
Author(s):  
R E Susek ◽  
S L Lindquist

Analysis of the cloned gene confirms that hsp26 of Saccharomyces cerevisiae is a member of the small heat shock protein superfamily. Previous mutational analysis failed to demonstrate any function for the protein. Further experiments presented here demonstrate that hsp26 has no obvious regulatory role and no major effect on thermotolerance. It is possible that the small heat shock protein genes originated as primitive viral or selfish DNA elements.


2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Ronik Khachatoorian ◽  
Ekambaram Ganapathy ◽  
Yasaman Ahmadieh ◽  
Nicole Wheatley ◽  
Christopher Sundberg ◽  
...  

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Haojie Zhang ◽  
Baoyu Hu ◽  
Jiali Xiong ◽  
Ting Chen ◽  
Qianyun Xi ◽  
...  

Abstract Background As a newly characterized type of noncoding RNA, circular RNA (circRNA) has been shown to have functions in diverse biological processes of animals. It has been reported that several noncoding RNAs may regulate animals’ response to heat stress which can be easily induced by hyperthermia in summer. However, the expression and functions of circRNAs in the pituitary of sows and whether they participate in heat stress adaption are still unclear. Results In this study, we found that high temperature over the thermoneutral zone of sows during the summer increased the serum heat shock protein 70 (HSP70) level, decreased the superoxide dismutase (SOD) vitality and prolactin (PRL) concentration, and induced heat stress in sows. Then, we explored circRNA in the pituitary of heat-stressed and normal sows using RNA sequencing and bioinformatics analysis. In total, 12,035 circRNAs were detected, with 59 circRNAs differentially expressed, including 42 up-regulated and 17 down-regulated circRNAs in pituitaries of the heat-stressed sows. Six randomly selected circRNAs were identified through reverse transcription PCR followed by DNA sequencing and other 7 randomly selected differentially expressed circRNAs were verified by quantitative real-time PCR analysis. The predicted target genes regulated by circRNAs through sponging microRNAs (miRNAs) were enriched in metabolic pathway. Furthermore, the predicted circRNA–miRNA–mRNA interactions showed that some circRNAs might sponge miRNAs to regulate pituitary-specific genes and heat shock protein family members, indicating circRNA’s roles in pituitary hormone secretion and heat stress response. Conclusions Our results provided a meaningful reference to understand the functions of circRNA in the porcine pituitary and the mechanisms by which circRNA may participate in animals’ response to heat stress.


2009 ◽  
Vol 423 (3) ◽  
pp. 411-419 ◽  
Author(s):  
Andrew J. Ramsey ◽  
Lance C. Russell ◽  
Michael Chinkers

Steroid-hormone-receptor maturation is a multi-step process that involves several TPR (tetratricopeptide repeat) proteins that bind to the maturation complex via the C-termini of hsp70 (heat-shock protein 70) and hsp90 (heat-shock protein 90). We produced a random T7 peptide library to investigate the roles played by the C-termini of the two heat-shock proteins in the TPR–hsp interactions. Surprisingly, phages with the MEEVD sequence, found at the C-terminus of hsp90, were not recovered from our biopanning experiments. However, two groups of phages were isolated that bound relatively tightly to HsPP5 (Homo sapiens protein phosphatase 5) TPR. Multiple copies of phages with a C-terminal sequence of LFG were isolated. These phages bound specifically to the TPR domain of HsPP5, although mutation studies produced no evidence that they bound to the domain's hsp90-binding groove. However, the most abundant family obtained in the initial screen had an aspartate residue at the C-terminus. Two members of this family with a C-terminal sequence of VD appeared to bind with approximately the same affinity as the hsp90 C-12 control. A second generation pseudo-random phage library produced a large number of phages with an LD C-terminus. These sequences acted as hsp70 analogues and had relatively low affinities for hsp90-specific TPR domains. Unfortunately, we failed to identify residues near hsp90's C-terminus that impart binding specificity to individual hsp90–TPR interactions. The results suggest that the C-terminal sequences of hsp70 and hsp90 act primarily as non-specific anchors for TPR proteins.


mBio ◽  
2021 ◽  
Author(s):  
Emily S. Mathews ◽  
Andrew J. Jezewski ◽  
Audrey R. Odom John

During its complex life cycle, the malaria parasite survives dramatic environmental stresses, including large temperature shifts. Protein prenylation is required during asexual replication of Plasmodium falciparum , and the canonical heat shock protein 40 protein (HSP40; PF3D7_1437900) is posttranslationally modified with a 15-carbon farnesyl isoprenyl group.


PLoS ONE ◽  
2019 ◽  
Vol 14 (9) ◽  
pp. e0222723
Author(s):  
Arnab Bandyopadhyay ◽  
Indrani Bose ◽  
Krishnananda Chattopadhyay

1987 ◽  
Vol 7 (10) ◽  
pp. 3473-3481
Author(s):  
D Norris ◽  
M A Osley

We have isolated Saccharomyces cerevisiae mutants bearing deletions of one or the other of the two divergently transcribed gene pairs encoding H2A and H2B. The deletions produced diverse effects on the yeast life cycle. Deletion of TRT1, one of the H2A-H2B gene pair sets, affected mitotic growth, sporulation, spore germination, the heat shock response, and exit from the stationary phase; deletion of TRT2, the other H2A-H2B gene pair set, had negligible effects on these same processes. Using a genetic complementation assay, we found that the differential effects of the deletions could be attributed to two features of the gene sets: first, the expression of the TRT1 gene pair, but not the TRT2 gene pair, could compensate for the absence of its partner; second, the protein subtypes encoded by the two gene pairs appear to have different functions in the heat shock response.


Sign in / Sign up

Export Citation Format

Share Document