THE GROWTH RESPONSE TO TUMOUR NECROSIS FACTOR α OF HUMAN GYNAECOLOGICAL CANCER CELL LINES

Cytokine ◽  
1998 ◽  
Vol 10 (6) ◽  
pp. 432-440 ◽  
Author(s):  
J.S. Beesley ◽  
P.L. Kirby ◽  
S. Takeda ◽  
A. Stackpoole ◽  
W.P. Soutter ◽  
...  
2002 ◽  
Vol 367 (3) ◽  
pp. 791-799 ◽  
Author(s):  
Sergio D. CATZ ◽  
Bernard M. BABIOR ◽  
Jennifer L. JOHNSON

The human promoter region of JFC1, a phosphatidylinositol 3,4,5-trisphosphate binding ATPase, was isolated by amplification of a 549bp region upstream of the jfc1 gene by the use of a double-PCR system. By primer extension analysis we mapped the transcription initiation site at nucleotide −321 relative to the translation start site. Putative regulatory elements were identified in the jfc1 TATA-less promoter, including three consensus sites for nuclear factor-κB (NF-κB). We analysed the three putative NF-κB binding sites by gel retardation and supershift assays. Each of the putative NF-κB sites interacted specifically with recombinant NF-κB p50, and the complexes co-migrated with those formed by the NF-κB consensus sequence and p50. An antibody to p50 generated a supershifted complex for these NF-κB sites. These sites formed specific complexes with nuclear proteins from tumour necrosis factor α (TNFα)-treated WEHI 231 cells, which were supershifted with antibodies against p50 and p65. The jfc1 promoter was transcriptionally active in various cell lines, as determined by luciferase reporter assays following transfection with a jfc1 promoter luciferase vector. Co-transfection with NF-κB expression vectors or stimulation with TNFα resulted in significant transactivation of the jfc1 promoter construct, although transactivation of a mutated jfc1 promoter was negligible. The expression of a dominant negative IκB (inhibitor κB) decreased basal jfc1 promoter activity. The cell lines PC-3, LNCaP and DU-145, but not Epstein—Barr virus-transformed lymphocytes, showed a dramatic increase in the expression of JFC1 after treatment with TNFα, suggesting that transcriptional activation of JFC1 by the TNFα/NF-κB pathway is significant in prostate carcinoma cell lines.


2001 ◽  
Vol 100 (3) ◽  
pp. 259-266 ◽  
Author(s):  
Thomas A. HEMING ◽  
Divina M. TUAZON ◽  
Sanat K. DAVÉ ◽  
Ashok K. CHOPRA ◽  
Johnny W. PETERSON ◽  
...  

The present studies determined the effects of extracellular pH (pHo) on the production of tumour necrosis factor-α (TNF-α) in the macrophage-like cell lines RAW 246.7 and J774 A.1. The cells were activated with lipopolysaccharide (LPS) at pHo 5.5, 6.5 or 7.4. TNF-α gene transcription was monitored by Northern blot analysis. Synthesis of the cytokine was monitored by ELISA measurements of the TNF-α content of cell-conditioned media (extracellularly released TNF-α) and cell lysates (cytosolic TNF-α). The magnitude of the TNF-α response differed markedly between the two cell lines. RAW cells were more responsive to LPS than were J774 cells. However, the effects of pHo on TNF-α production were similar in the two cell lines. TNF-α gene transcription was insensitive to experimental pHo. The pHo had no effect on the abundance of TNF-α mRNA at 2, 4 or 18 h. Nonetheless, synthesis of TNF-α was affected significantly by pHo. The TNF-α contents of cell-conditioned medium and cell lysate at 18 h were reduced progressively at lower pHo values. The data indicate that pHo alters TNF-α production in RAW and J774 cells at a post-transcriptional level. These findings suggest that pHo influences the phenotypic responses of macrophages to activating stimuli and modifies the role that macrophages play in inflammatory and immune actions.


2011 ◽  
Vol 435 (2) ◽  
pp. 381-390 ◽  
Author(s):  
Christopher J. Clarke ◽  
Emily A. Cloessner ◽  
Patrick L. Roddy ◽  
Yusuf A. Hannun

Activation of N-SMase (neutral sphingomyelinase) is an established part of the response of cytokines such as TNF (tumour necrosis factor)-α. However, it remains unclear which of the currently cloned N-SMase isoforms (nSMase1, nSMase2 and nSMase3) are responsible for this activity. In MCF-7 cells, we found that TNF-α induces late, but not early, increases in N-SMase activity, and that nSMase2 is the primary isoform activated, most likely through post-transcriptional mechanisms. Surprisingly, overexpression of tagged or untagged nSMase3 in multiple cell lines had no significant effect on in vitro N-SMase activity. Moreover, only overexpression of nSMase2, but not nSMase1 or nSMase3, had significant effects on cellular sphingolipid levels, increasing ceramide and decreasing sphingomyelin. Additionally, only siRNA (small interfering RNA) knockdown of nSMase1 significantly decreased basal in vitro N-SMase activity of MCF-7 cells, whereas nSMase2 but not nSMase3 siRNA inhibited TNF-α-induced activity. Taken together, these results identify nSMase2 as the major TNF-α-responsive N-SMase in MCF-7 cells. Moreover, the results suggest that nSMase3 may not possess in vitro N-SMase activity and does not affect cellular sphingolipid levels in the cell lines evaluated. On the other hand, nSMase1 contributes to in vitro N-SMase activity, but does not affect cellular sphingolipids much.


2003 ◽  
Vol 70 ◽  
pp. 39-52 ◽  
Author(s):  
Roy A. Black ◽  
John R. Doedens ◽  
Rajeev Mahimkar ◽  
Richard Johnson ◽  
Lin Guo ◽  
...  

Tumour necrosis factor α (TNFα)-converting enzyme (TACE/ADAM-17, where ADAM stands for a disintegrin and metalloproteinase) releases from the cell surface the extracellular domains of TNF and several other proteins. Previous studies have found that, while purified TACE preferentially cleaves peptides representing the processing sites in TNF and transforming growth factor α, the cellular enzyme nonetheless also sheds proteins with divergent cleavage sites very efficiently. More recent work, identifying the cleavage site in the p75 TNF receptor, quantifying the susceptibility of additional peptides to cleavage by TACE and identifying additional protein substrates, underlines the complexity of TACE-substrate interactions. In addition to substrate specificity, the mechanism underlying the increased rate of shedding caused by agents that activate cells remains poorly understood. Recent work in this area, utilizing a peptide substrate as a probe for cellular TACE activity, indicates that the intrinsic activity of the enzyme is somehow increased.


Sign in / Sign up

Export Citation Format

Share Document