Transport of Carbon and Nitrogen to the Northern Adriatic Sea by the Po River

1998 ◽  
Vol 46 (1) ◽  
pp. 127-142 ◽  
Author(s):  
M. Pettine ◽  
L. Patrolecco ◽  
M. Camusso ◽  
S. Crescenzio
Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2280 ◽  
Author(s):  
Federica Grilli ◽  
Stefano Accoroni ◽  
Francesco Acri ◽  
Fabrizio Bernardi Aubry ◽  
Caterina Bergami ◽  
...  

Long-term data series (1971–2015) of physical and biogeochemical parameters were analyzed in order to assess trends and variability of oceanographic conditions in the northern Adriatic Sea (NAS), a mid-latitude shallow continental shelf strongly impacted by river discharges, human activities and climate changes. Interpolation maps and statistical models were applied to investigate seasonal and spatial variability, as well as decadal trends of temperature, salinity, chlorophyll-a and nutrients. This analysis shows that sea surface temperature increased by +0.36% year−1 over four decades. Annual mean flow of the Po River markedly changed due to the occurrence of periods of persistent drought, whereas the frequency of flow rates higher than 3000 m3 s−1 decreased between 2006 and 2015. Moreover, we observed a long-term decrease in surface phosphate concentrations in Po River water (−1.34% year−1) and in seawater (in summer −2.56% year−1) coupled, however, to a significant increase in nitrate concentration in seawater (+3.80% year−1) in almost all seasons. These changes indicate that the nutrient concentrations in the NAS have been largely modulated, in the last forty years, by the evolution of environmental management practices and of the runoff. This implies that further alteration of the marine environment must be expected as a consequence of the climate changes.


2021 ◽  
Author(s):  
Marco Zavatarelli ◽  
Isabella Scroccaro ◽  
Tomas Lovato

<p>In the framework of the European Project H2020 "ODYSSEA" (Operating a network of integrated observatory systems in the Mediterranean SEA, http://odysseaplatform.eu/) a forecasting modeling system of the coupled physical and biogeochemical conditions of the Northern Adriatic Sea is under development.</p><p>The modeling system consists of the on-line coupling of the European general circulation model - NEMO (Nucleus for European Modeling of the Ocean, https://www.nemo-ocean.eu/), with the marine biogeochemical model - BFM (Biogeochemical Flux Model, bfm-community.eu/).<br>The biogeochemical component of the model includes the simulation of the biogeochemical processes of both water column and sediments and their coupling. The model is run for the first time in the Northern Adriatic Sea with an explicit benthic-pelagic coupling.</p><p>The horizontal spatial discretization is defined by a rectangular grid of 315 × 278 cells, having a horizontal resolution of about 800 m. The vertical resolution is defined at 2 m, with 48 z-levels regularly spaced. Currently the atmospheric forcing are the ECMWF 6hr analysis atmospheric fields. The river supplies of fresh water and nutrient salts consider the daily runoff of the Po river, while the other rivers within the study area are included as climatological values. The open boundary conditions of the modeling system come from the Copernicus Marine Environment Monitoring Service (CMEMS, http://marine.copernicus.eu/).</p><p>In this work, the hindcast simulations encompassing the period 2000 – 2009 are validated against available observations from in situ and satellite platforms for sea surface temperature, chlorophyll-a and dissolved inorganic nutrients and, in order to evaluate the impact of a resolved benthic biogeochemical dynamics,  compared against simulations results obtained utilising a simple benthic closure parameterisation.</p>


Sign in / Sign up

Export Citation Format

Share Document