Indispensable Role of Tissue-Type Plasminogen Activator in Growth Factor-Dependent Tube Formation of Human Microvascular Endothelial Cells in Vitro

1993 ◽  
Vol 204 (2) ◽  
pp. 223-229 ◽  
Author(s):  
Yasufumi Sato ◽  
Kazuki Okamura ◽  
Akio Morimoto ◽  
Ryoji Hamanaka ◽  
Kazuyuki Hamaguchi ◽  
...  
2007 ◽  
Vol 97 (02) ◽  
pp. 263-271 ◽  
Author(s):  
James Muldowney III ◽  
Corrie Painter ◽  
Elaine Sanders-Bush ◽  
Nancy Brown ◽  
Douglas Vaughan

SummaryThe acute physiologic release of tissue-type plasminogen activator (t-PA) from the endothelium is critical for vascular homeostasis. This process is prostacyclin- and nitric oxide (NO)-independent in humans. It has been suggested that calcium signaling and endothelial-derived hyperpolarizing factors (EDHF) may play a role in t-PA release. G-protein-coupled receptor-dependent calcium signaling is typically Gαq -dependent. EDHFs have been functionally defined and in various tissues are believed to be various regioisomers of the epoxyeicosatrienoic acids (EETs). We tested the hypothesis in vitrothat thrombin-stimulated t-PA release from human microvascular endothelial cells (HMECs) is both Gαq - and EDHF-dependent. Conditioned media was harvested following thrombin stimulation, and t-PA antigen was measured by ELISA. Thrombin-induced t-PA release was limited by a membrane-permeable Gαq inhibitory peptide, the PLC-β antagonist U73122, and the IP3 receptor antagonist 2-aminoethoxyphenylborane, while the Gαq agonist Pasteurellatoxin modestly induced t-PA release. The cytochrome P450 (CYP450) inhibitor, miconazole, and the arachidonic acid epoxygenase inhibitor MS-PPOH inhibited thrombin-stimulated t-PA release, while 5,6-EET-methyl ester stimulated t-PA release. The 5,6- and 14,15-EET antagonist, 14,15-epoxyeicosa-5(Z)- enoic acid, inhibited t-PA release at the 100 µM concentration. However, thrombin-stimulated t-PA release was unaffected by the prostacyclin and NO inhibitors ASA and L-NAME, as well as the potassium channel inhibitors TEA, apamin and charybdotoxin. These studies suggest that thrombin-stimulated t-PA release is Gαq-, PLC-β -, IP3 -, and 5,6-EET-dependent while being prostacyclin-, NO- and K + channel-independent in HMECs.


1989 ◽  
Vol 62 (02) ◽  
pp. 699-703 ◽  
Author(s):  
Rob J Aerts ◽  
Karin Gillis ◽  
Hans Pannekoek

SummaryIt has recently been shown that the fibrinolytic components plasminogen and tissue-type plasminogen activator (t-PA) both bind to cultured human umbilical vein endothelial cells (HUVEC). After cleavage of t-PA by plasmin, “single-chain” t-PA (sct-PA) is converted into “two-chain” t-PA (tct-PA), which differs from the former in a number of respects. We compared binding of sct-PA and tct-PA to the surface of HUVEC. Removal of t-PA bound to HUVEC by a mild treatment with acid and a subsequent quantification of eluted t-PA both by activity- and immunoradiometric assays revealed that, at concentrations between 10 and 500 nM, HUVEC bind about 3-4 times more sct-PA than tct-PA. At these concentrations, both sct-PA and tct-PA remain active when bound to HUVEC. Mutual competition experiments showed that sct-PA and tct-PA can virtually fully inhibit binding of each other to HUVEC, but that an about twofold higher concentration of tct-PA is required to prevent halfmaximal binding of sct-PA than visa versa. These results demonstrate that sct-PA and tct-PA bind with different affinities to the same binding sites on HUVEC.


1989 ◽  
Vol 61 (03) ◽  
pp. 497-501 ◽  
Author(s):  
E Seifried ◽  
P Tanswell ◽  
D Ellbrück ◽  
W Haerer ◽  
A Schmidt

SummaryPharmacokinetics and systemic effects of recombinant tissue type plasminogen activator (rt-PA) were determined during coronary thrombolysis in 12 acute myocardial infarction patients using a consecutive intravenous infusion regimen. Ten mg rt-PA were infused in 2 minutes resulting in a peak plasma concentration (mean ±SD) of 3310±950 ng/ml, followed by 50 mg in 1 h and 30 mg in 1.5 h yielding steady state plasma levels of. 2210±470 nglml and 930±200 ng/ml, respectively. All patients received intravenous heparin. Total clearance of rt-PA was 380±74 ml/min, t,½α was 3.6±0.9 min and t,½β was 16±5.4 min.After 90 min, in plasma samples containing anti-rt-PA-IgG to inhibit in vitro effects, fibrinogen was decreased to 54%, plasminogen to 52%, α2-antiplasmin to 25%, α2-macroglobulin to 90% and antithrombin III to 85% of initial values. Coagulation times were prolonged and fibrin D-dimer concentrations increased from 0.40 to 2.7 μg/ml. It is concluded that pharmacokinetics of rt-PA show low interpatient variability and that its short mean residence time in plasma allows precise control of therapy. Apart from its moderate effect on the haemostatic system, rt-PA appears to lyse a fibrin pool in addition to the coronary thrombus.


1994 ◽  
Vol 72 (06) ◽  
pp. 906-911 ◽  
Author(s):  
D C Rijken ◽  
E Groeneveld ◽  
M M Barrett-Bergshoeff

SummaryBM 06.022 is a non-glycosylated mutant of human tissue-type plasminogen activator (t-PA) comprising only the kringle-2 and proteinase domains. The in vivo half-life of BM 06.022 antigen is 4- to 5-fold longer than that of t-PA antigen. The in vitro half-life of the activity of BM 06.022 at therapeutic concentrations in plasma is shorter than that of t-PA. In this study the inactivation of BM 06.022 in plasma was further investigated.Varying concentrations of BM 06.022 were incubated in plasma for 0-150 min. Activity assays on serial samples showed a dose-dependent decline of BM 06.022 activity with a half-life from 72 min at 0.3 μg/ml to 38 min at 10 μg/ml. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) followed by fibrin autography showed the generation of several BM 06.022-complexes. These complexes could be completely precipitated with antibodies against Cl-inactivator, α2-antiplasmin and α1-antitrypsin.During the incubation of BM 06.022 in plasma, plasmin was generated dose-dependently as revealed by varying degrees of a2-anti-plasmin consumption and fibrinogen degradation. SDS-PAGE and immunoblotting showed that single-chain BM 06.022 was rapidly (i. e. within 45 min) converted into its two-chain form at concentrations of 5 μg/ml BM 06.022 and higher.In conclusion, BM 06.022 at therapeutic concentrations in plasma was inactivated by Cl-inactivator, a2-antiplasmin and a j-antitrypsin. The half-life of the activity decreased at increasing BM 06.022 concentrations, probably as a result of the generation of two-chain BM 06.022 which may be inactivated faster than the single-chain form.


1983 ◽  
Vol 50 (02) ◽  
pp. 518-523 ◽  
Author(s):  
C Kluft ◽  
A F H Jie ◽  
R A Allen

SummaryFunctional assay of extrinsic (tissue-type) plasminogen activator (EPA) in plasma on fibrin plates was evaluated. Using specific quenching antibodies, we demonstrated the method to be specific for EPA under all conditions tested. Contributions of urokinases and intrinsic activators were excluded. The quantity of EPA in blood samples, as compared with purified uterine tissue activator, shows 1 blood activator unit (BAU) to be comparable to 0.93 ng.The median values for EPA activity for healthy volunteers were: baseline, 1.9 BAU/ml (n = 123); diurnal, 5.5 BAU/ml (n = 12); DDAVP administration, 11.7 BAU/ml (n = 39); exhaustive exercise, 25 BAU/ml (n = 24); venous occlusion (15 min), 35 BAU/ml (n = 61). A large inter-individual variation in EPA activity was found, while individual baseline values tended to be constant for periods of weeks.In vitro in blood EPA activity shows a disappearance of 50% in about 90 min at 37° C; EPA activity in euglobulin fractions is stable for ≤2 hr at 37° C.A rapid decrease in EPA activity occurs in vivo, as noted after extracorporal circulation and exercise stimulation (t½ decay, 2-5 min).


Sign in / Sign up

Export Citation Format

Share Document