In SituHybridization in Living Cells: Detection of RNA Molecules

1997 ◽  
Vol 231 (1) ◽  
pp. 226-233 ◽  
Author(s):  
S. Paillasson ◽  
M. Van De Corput ◽  
R.W. Dirks ◽  
H.J. Tanke ◽  
M. Robert-Nicoud ◽  
...  
Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 333
Author(s):  
Yuichi Itto

A formal analogy of fluctuating diffusivity to thermodynamics is discussed for messenger RNA molecules fluorescently fused to a protein in living cells. Regarding the average value of the fluctuating diffusivity of such RNA-protein particles as the analog of the internal energy, the analogs of the quantity of heat and work are identified. The Clausius-like inequality is shown to hold for the entropy associated with diffusivity fluctuations, which plays a role analogous to the thermodynamic entropy, and the analog of the quantity of heat. The change of the statistical fluctuation distribution is also examined from a geometric perspective. The present discussions may contribute to a deeper understanding of the fluctuating diffusivity in view of the laws of thermodynamics.


1974 ◽  
Vol 144 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Hugh Woodland ◽  
Sarah E. Ayers

Micro-injection into the oocytes and eggs of Xenopus laevis was used to ascertain the effects of synthetic polyribonucleotides on protein synthesis in living cells. Poly(U) and poly(A) were not translated detectably, nor did they change the rate of endogenous protein synthesis. The same was true of poly(G,U), poly(A,G,U), poly(A,C,G,U), G-U-G-(U)n, A-(U)n and AUG. In contrast, A-U-G-(U)n was a potent inhibitor of protein synthesis in the cell. This might be because it is initiated normally but lacks a termination codon, or because it inhibits the translation of other molecules in some way not dependent on its normal initiation. Poly(G,U), poly(A,G,U) and poly(A,C,G,U) inhibited haemoglobin synthesis when they were injected into the oocyte with haemoglobin mRNA. The synthetic polyribonucleotides did not inhibit the translation of the natural mRNA when the two sorts of molecules were injected at different times. It is suggested that the synthetic RNA molecules compete with the natural mRNA for a pre-initiation factor in limited supply.


2021 ◽  
Author(s):  
Tycho Marinus ◽  
Adam B Fessler ◽  
Craig A Ogle ◽  
Danny Incarnato

Abstract Due to the mounting evidence that RNA structure plays a critical role in regulating almost any physiological as well as pathological process, being able to accurately define the folding of RNA molecules within living cells has become a crucial need. We introduce here 2-aminopyridine-3-carboxylic acid imidazolide (2A3), as a general probe for the interrogation of RNA structures in vivo. 2A3 shows moderate improvements with respect to the state-of-the-art selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) reagent NAI on naked RNA under in vitro conditions, but it significantly outperforms NAI when probing RNA structure in vivo, particularly in bacteria, underlining its increased ability to permeate biological membranes. When used as a restraint to drive RNA structure prediction, data derived by SHAPE-MaP with 2A3 yields more accurate predictions than NAI-derived data. Due to its extreme efficiency and accuracy, we can anticipate that 2A3 will rapidly take over conventional SHAPE reagents for probing RNA structures both in vitro and in vivo.


2020 ◽  
Author(s):  
Tycho Marinus ◽  
Adam B. Fessler ◽  
Craig A. Ogle ◽  
Danny Incarnato

ABSTRACTDue to the mounting evidence that RNA structure plays a critical role in regulating almost any physiological as well as pathological process, being able to accurately define the folding of RNA molecules within living cells has become a crucial need. We introduce here 2-aminopyridine-3-carboxylic acid imidazolide (2A3), as a general probe for the interrogation of RNA structures in vivo. 2A3 shows moderate improvements with respect to the state-of-the-art SHAPE reagent NAI on naked RNA under in vitro conditions, but it significantly outperforms NAI when probing RNA structure in vivo, particularly in bacteria, underlining its increased ability to permeate biological membranes. When used as a restraint to drive RNA structure prediction, data derived by SHAPE-MaP with 2A3 yields more accurate predictions than NAI-derived data. Due to its extreme efficiency and accuracy, we can anticipate that 2A3 will rapidly take over conventional SHAPE reagents for probing RNA structures both in vitro and in vivo.


2009 ◽  
Vol 02 (04) ◽  
pp. 315-324 ◽  
Author(s):  
ANTONY K. CHEN ◽  
ANDREW TSOURKAS

There is a growing realization that cell-to-cell variations in gene expression have important biological consequences underlying phenotype diversity and cell fate. Although analytical tools for measuring gene expression, such as DNA microarrays, reverse-transcriptase PCR and in situ hybridization have been widely utilized to discover the role of genetic variations in governing cellular behavior, these methods are performed in cell lysates and/or on fixed cells, and therefore lack the ability to provide comprehensive spatial-dynamic information on gene expression. This has invoked the recent development of molecular imaging strategies capable of illuminating the distribution and dynamics of RNA molecules in living cells. In this review, we describe a class of molecular imaging probes known as molecular beacons (MBs), which have increasingly become the probe of choice for imaging RNA in living cells. In addition, we present the major challenges that can limit the ability of MBs to provide accurate measurements of RNA, and discuss efforts that have been made to overcome these challenges. It is envisioned that with continued refinement of the MB design, MBs will eventually become an indispensable tool for analyzing gene expression in biology and medicine.


2019 ◽  
Author(s):  
Esther Braselmann ◽  
Timothy J. Stasevich ◽  
Kenneth Lyon ◽  
Robert T. Batey ◽  
Amy E. Palmer

AbstractLabeling and tracking biomolecules with fluorescent probes on the single molecule level enables quantitative insights into their dynamics in living cells. We previously developed Riboglow, a platform to label RNAs in live mammalian cells, consisting of a short RNA tag and a small organic probe that increases fluorescence upon binding RNA. Here, we demonstrate that Riboglow is capable of detecting and tracking single RNA molecules. We benchmark RNA tracking by comparing results with the established MS2 RNA tagging system. To demonstrate versatility of Riboglow, we assay translation on the single molecule level, where the translated mRNA is tagged with Riboglow and the nascent polypeptide is labeled with a fluorescent antibody. The growing effort to investigate RNA biology on the single molecule level requires sophisticated and diverse fluorescent probes for multiplexed, multi-color labeling of biomolecules of interest, and we present Riboglow as a new member in this toolbox.


2021 ◽  
Author(s):  
Audrey Cochard ◽  
Marina Garcia-Jove Navarro ◽  
Shunnichi Kashida ◽  
Michel Kress ◽  
Dominique Weil ◽  
...  

Membrane-less organelles, by localizing and regulating complex biochemical reactions, are ubiquitous functional subunits of intracellular organization. They include a variety of nuclear and cytoplasmic ribonucleoprotein (RNP) condensates, such as nucleoli, P-bodies, germ granules and stress granules. While is it now recognized that specific RNA and protein families are critical for the biogenesis of RNP condensates, how these molecular constituents determine condensate size and morphology is unknown. To circumvent the biochemical complexity of endogenous RNP condensates, the use of programmable tools to reconstitute condensate formation with minimal constituents can be instrumental. Here we report a methodology to form RNA-containing condensates in living cells with controlled RNA and protein composition. Our bioengineered condensates are made of ArtiGranule scaffolds undergoing liquid-liquid phase separation in cells and programmed to specifically recruit a unique RNA species. We found that RNAs mainly localized on condensate surface, either as isolated RNA molecules or as a homogenous corona of RNA molecules around the condensate. This simplified system allowed us to demonstrate that the size of the condensates scales with RNA surface density, the higher the RNA density is, the smaller and more frequent the condensates are. Our observations suggest a mechanism based on physical constraints, provided by RNAs localized on condensate surface, that limit condensate growth and coalescence.


2019 ◽  
Vol 166 (1) ◽  
pp. 13-27 ◽  
Author(s):  
Hideki Nakamura ◽  
Robert DeRose ◽  
Takanari Inoue

Abstract As part of the ‘Central Dogma’ of molecular biology, the function of proteins and nucleic acids within a cell is determined by their primary sequence. Recent work, however, has shown that within living cells the role of many proteins and RNA molecules can be influenced by the physical state in which the molecule is found. Within living cells, both protein and RNA molecules are observed to condense into non-membrane-bound yet distinct structures such as liquid droplets, hydrogels and insoluble aggregates. These unique intracellular organizations, collectively termed biomolecular condensates, have been found to be vital in both normal and pathological conditions. Here, we review the latest studies that have developed molecular tools attempting to recreate artificial biomolecular condensates in living cells. We will describe their design principles, implementation and unique characteristics, along with limitations. We will also introduce how these tools can be used to probe and perturb normal and pathological cell functions, which will then be complemented with discussions of remaining areas for technological advance under this exciting theme.


Sign in / Sign up

Export Citation Format

Share Document