intracellular organization
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 21)

H-INDEX

17
(FIVE YEARS 3)

Synthese ◽  
2021 ◽  
Author(s):  
Fridolin Gross

AbstractEven though complexity is a concept that is ubiquitously used by biologists and philosophers of biology, it is rarely made precise. I argue that a clarification of the concept is neither trivial nor unachievable, and I propose a unifying framework based on the technical notion of “effective complexity” that allows me to do justice to conflicting intuitions about biological complexity, while taking into account several distinctions in the usage of the concept that are often overlooked. In particular, I propose a distinction between two kinds of complexity, “mechanical” and “emergent”, which can be understood as different ways of relating the effective complexity of mechanisms and of behaviors in biological explanations. I illustrate the adequacy of this framework by discussing different attempts to understand intracellular organization in terms of pathways and networks. My framework provides a different way of thinking about recent philosophical debates, for example, on the difference between mechanistic and topological explanations and about the concept of emergence. Moreover, it can contribute to a proper assessment of metascientific arguments that invoke biological complexity.


2021 ◽  
Author(s):  
Audrey Cochard ◽  
Marina Garcia-Jove Navarro ◽  
Shunnichi Kashida ◽  
Michel Kress ◽  
Dominique Weil ◽  
...  

Membrane-less organelles, by localizing and regulating complex biochemical reactions, are ubiquitous functional subunits of intracellular organization. They include a variety of nuclear and cytoplasmic ribonucleoprotein (RNP) condensates, such as nucleoli, P-bodies, germ granules and stress granules. While is it now recognized that specific RNA and protein families are critical for the biogenesis of RNP condensates, how these molecular constituents determine condensate size and morphology is unknown. To circumvent the biochemical complexity of endogenous RNP condensates, the use of programmable tools to reconstitute condensate formation with minimal constituents can be instrumental. Here we report a methodology to form RNA-containing condensates in living cells with controlled RNA and protein composition. Our bioengineered condensates are made of ArtiGranule scaffolds undergoing liquid-liquid phase separation in cells and programmed to specifically recruit a unique RNA species. We found that RNAs mainly localized on condensate surface, either as isolated RNA molecules or as a homogenous corona of RNA molecules around the condensate. This simplified system allowed us to demonstrate that the size of the condensates scales with RNA surface density, the higher the RNA density is, the smaller and more frequent the condensates are. Our observations suggest a mechanism based on physical constraints, provided by RNAs localized on condensate surface, that limit condensate growth and coalescence.


2021 ◽  
Vol 22 (11) ◽  
pp. 5965
Author(s):  
Natalia Schiefermeier-Mach ◽  
Violetta Moresco ◽  
Stephan Geley ◽  
Lea Heinrich ◽  
Lukas Lechner ◽  
...  

Inhaled Aspergillus fumigatus spores can be internalized by alveolar type II cells. Cell lines stably expressing fluorescently labeled components of endocytic pathway enable investigations of intracellular organization during conidia internalization and measurement of the process kinetics. The goal of this report was to evaluate the methodological appliance of cell lines for studying fungal conidia internalization. We have generated A549 cell lines stably expressing fluorescently labeled actin (LifeAct-mRuby2) and late endosomal protein (LAMP1-NeonGreen) following an evaluation of cell-pathogen interactions in live and fixed cells. Our data show that the LAMP1-NeonGreen cell line can be used to visualize conidia co-localization with LAMP1 in live and fixed cells. However, caution is necessary when using LifeAct-mRuby2-cell lines as it may affect the conidia internalization dynamics.


2021 ◽  
Vol 120 (3) ◽  
pp. 266a
Author(s):  
Matheus Palhares Viana ◽  
Susanne M. Rafelski

2021 ◽  
Vol 220 (3) ◽  
Author(s):  
Brian D. Freibaum ◽  
James Messing ◽  
Peiguo Yang ◽  
Hong Joo Kim ◽  
J. Paul Taylor

Liquid–liquid phase separation (LLPS) is a mechanism of intracellular organization that underlies the assembly of a variety of RNP granules. Fundamental biophysical principles governing LLPS during granule assembly have been revealed by simple in vitro systems, but these systems have limitations when studying the biology of complex, multicomponent RNP granules. Visualization of RNP granules in cells has validated key principles revealed by simple in vitro systems, but this approach presents difficulties for interrogating biophysical features of RNP granules and provides limited ability to manipulate protein, nucleic acid, or small molecule concentrations. Here, we introduce a system that builds upon recent insights into the mechanisms underlying RNP granule assembly and permits high-fidelity reconstitution of stress granules and the granular component of nucleoli in mammalian cellular lysate. This system fills the gap between simple in vitro systems and live cells and allows for a variety of studies of membraneless organelles, including the development of therapeutics that modify properties of specific condensates.


2020 ◽  
Author(s):  
Matheus P. Viana ◽  
Jianxu Chen ◽  
Theo A. Knijnenburg ◽  
Ritvik Vasan ◽  
Calysta Yan ◽  
...  

SummaryDespite the intimate link between cell organization and function, the principles underlying intracellular organization and the relation between organization, gene expression and phenotype are not well understood. We address this by creating a benchmark for mean cell organization and the natural range of cell-to-cell variation. This benchmark can be used for comparison to other normal or abnormal cell states. To do this, we developed a reproducible microscope imaging pipeline to generate a high quality dataset of 3D, high-resolution images of over 200,000 live cells from 25 isogenic human induced pluripotent stem cell (hiPSC) lines from the Allen Cell Collection. Each line contains one fluorescently tagged protein, created via endogenous CRISPR/Cas9 gene editing, representing a key cellular structure or organelle. We used these images to develop a new multi-part generalizable analysis approach of the locations, amounts, and variation of the 25 cellular structures. Taking an integrated approach, we found that both the extent to which a structure’s individual location varied (“stereotypy”) and the extent to which the structure localized relative to all the other cellular structures (“concordance”) were robust to a wide range of cell shape variation, from flatter to taller, smaller to larger, or less to more polarized cells. We also found that these cellular structures varied greatly in how their volumes scaled with cell and nuclear size. These analyses create a data-driven set of quantitative rules for the locations, amounts, and variation of 25 cellular structures within the hiPSC as a normal baseline for cell organization.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Hui Li ◽  
Jie Yang ◽  
Cuiping Tian ◽  
Min Diao ◽  
Quan Wang ◽  
...  

Abstract G-protein-coupled receptors (GPCRs) play important roles in cellular functions. However, their intracellular organization is largely unknown. Through investigation of the cannabinoid receptor 1 (CB1), we discovered periodically repeating clusters of CB1 hotspots within the axons of neurons. We observed these CB1 hotspots interact with the membrane-associated periodic skeleton (MPS) forming a complex crucial in the regulation of CB1 signaling. Furthermore, we found that CB1 hotspot periodicity increased upon CB1 agonist application, and these activated CB1 displayed less dynamic movement compared to non-activated CB1. Our results suggest that CB1 forms periodic hotspots organized by the MPS as a mechanism to increase signaling efficacy upon activation.


2020 ◽  
Vol 13 (11) ◽  
pp. dmm044354
Author(s):  
Ivana Prokic ◽  
Belinda S. Cowling ◽  
Candice Kutchukian ◽  
Christine Kretz ◽  
Hichem Tasfaout ◽  
...  

ABSTRACTSkeletal muscle development and regeneration are tightly regulated processes. How the intracellular organization of muscle fibers is achieved during these steps is unclear. Here, we focus on the cellular and physiological roles of amphiphysin 2 (BIN1), a membrane remodeling protein mutated in both congenital and adult centronuclear myopathies (CNM), that is ubiquitously expressed and has skeletal muscle-specific isoforms. We created and characterized constitutive muscle-specific and inducible Bin1 homozygous and heterozygous knockout mice targeting either ubiquitous or muscle-specific isoforms. Constitutive Bin1-deficient mice died at birth from lack of feeding due to a skeletal muscle defect. T-tubules and other organelles were misplaced and altered, supporting a general early role for BIN1 in intracellular organization, in addition to membrane remodeling. Although restricted deletion of Bin1 in unchallenged adult muscles had no impact, the forced switch from the muscle-specific isoforms to the ubiquitous isoforms through deletion of the in-frame muscle-specific exon delayed muscle regeneration. Thus, ubiquitous BIN1 function is necessary for muscle development and function, whereas its muscle-specific isoforms fine tune muscle regeneration in adulthood, supporting that BIN1 CNM with congenital onset are due to developmental defects, whereas later onset may be due to regeneration defects.


2020 ◽  
Author(s):  
Brian D. Freibaum ◽  
James Messing ◽  
Peiguo Yang ◽  
Hong Joo Kim ◽  
J. Paul Taylor

AbstractLiquid-liquid phase separation (LLPS) is an important mechanism of intracellular organization that underlies the assembly of a variety of distinct RNP granules. Fundamental biophysical principles governing LLPS during RNP granule assembly have been revealed by simple in vitro systems consisting of several components, but these systems have limitations when studying the biology of complex, multicomponent RNP granules. Visualization of RNP granules in live cells has validated key principles revealed by simple in vitro systems, but this approach presents difficulties for interrogating biophysical features of RNP granules and provides limited ability to manipulate protein, nucleic acid, or small molecule concentrations. Here we introduce a system that builds upon recent insights into the mechanisms underlying RNP granule assembly and permits high fidelity reconstitution of stress granules and the granular component of nucleoli in mammalian cellular lysate. This system fills the gap between simple in vitro systems and live cells, and allows for a wide variety of studies of membraneless organelles.


Sign in / Sign up

Export Citation Format

Share Document