Intracellular Signaling Pathway of FGF-2-modulated Corneal Endothelial Cell Migration during Wound Healing in vitro

2001 ◽  
Vol 73 (5) ◽  
pp. 639-650 ◽  
Author(s):  
Peter W Rieck ◽  
Symira Cholidis ◽  
Christian Hartmann
2016 ◽  
Vol 57 (15) ◽  
pp. 6731 ◽  
Author(s):  
Landon C. Meekins ◽  
Noel Rosado-Adames ◽  
Rupalatha Maddala ◽  
Jiagang J. Zhao ◽  
Ponugoti V. Rao ◽  
...  

Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Gholamreza Esmaeeli Djavid

Abstract. Wound healing consists of a series of highly orderly overlapping processes characterized by hemostasis, inflammation, proliferation, and remodeling. Prolongation or interruption in each phase can lead to delayed wound healing or a non-healing chronic wound. Vitamin A is a crucial nutrient that is most beneficial for the health of the skin. The present study was undertaken to determine the effect of vitamin A on regeneration, angiogenesis, and inflammation characteristics in an in vitro model system during wound healing. For this purpose, mouse skin normal fibroblast (L929), human umbilical vein endothelial cell (HUVEC), and monocyte/macrophage-like cell line (RAW 264.7) were considered to evaluate proliferation, angiogenesis, and anti-inflammatory responses, respectively. Vitamin A (0.1–5 μM) increased cellular proliferation of L929 and HUVEC (p < 0.05). Similarly, it stimulated angiogenesis by promoting endothelial cell migration up to approximately 4 fold and interestingly tube formation up to 8.5 fold (p < 0.01). Furthermore, vitamin A treatment was shown to decrease the level of nitric oxide production in a dose-dependent effect (p < 0.05), exhibiting the anti-inflammatory property of vitamin A in accelerating wound healing. These results may reveal the therapeutic potential of vitamin A in diabetic wound healing by stimulating regeneration, angiogenesis, and anti-inflammation responses.


2017 ◽  
Vol 280 ◽  
pp. S235-S236
Author(s):  
Mark Taylor ◽  
Tomasz Jaunky ◽  
Katherine Hewitt ◽  
Frazer Lowe ◽  
Ian Fearon ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256646
Author(s):  
Harsha Nagar ◽  
Seonhee Kim ◽  
Ikjun Lee ◽  
Su-Jeong Choi ◽  
Shuyu Piao ◽  
...  

Rho GDP-dissociation inhibitor (RhoGDI), a downregulator of Rho family GTPases, prevents nucleotide exchange and membrane association. It is responsible for the activation of Rho GTPases, which regulate a variety of cellular processes, such as migration. Although RhoGDI2 has been identified as a tumor suppressor gene involved in cellular migration and invasion, little is known about its role in vascular endothelial cell (EC) migration. CR6-interacting factor 1 (CRIF1) is a CR6/GADD45-interacting protein with important mitochondrial functions and regulation of cell growth. We examined the expression of RhoGDI2 in CRIF1-deficient human umbilical vein endothelial cells (HUVECs) and its role in cell migration. Expression of RhoGDI2 was found to be considerably higher in CRIF1-deficient HUVECs along with suppression of cell migration. Moreover, the phosphorylation levels of Akt and CREB were decreased in CRIF1-silenced cells. The Akt-CREB signaling pathway was implicated in the changes in endothelial cell migration caused by CRIF1 downregulation. In addition to RhoGDI2, we identified another factor that promotes migration and invasion of ECs. Adrenomedullin2 (ADM2) is an autocrine/paracrine factor that regulates vascular tone and other vascular functions. Endogenous ADM2 levels were elevated in CRIF1-silenced HUVECs with no effect on cell migration. However, siRNA-mediated depletion of RhoGDI2 or exogenous ADM2 administration significantly restored cell migration via the Akt-CREB signaling pathway. In conclusion, RhoGDI2 and ADM2 play important roles in the migration of CRIF1-deficient endothelial cells.


2000 ◽  
Vol 113 (1) ◽  
pp. 59-69 ◽  
Author(s):  
M.F. Carlevaro ◽  
S. Cermelli ◽  
R. Cancedda ◽  
F. Descalzi Cancedda

Vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) induces endothelial cell migration and proliferation in culture and is strongly angiogenic in vivo. VEGF synthesis has been shown to occur in both normal and transformed cells. The receptors for the factor have been shown to be localized mainly in endothelial cells, however, the presence of VEGF synthesis and the VEGF receptor in cells other than endothelial cells has been demonstrated. Neoangiogenesis in cartilage growth plate plays a fundamental role in endochondral ossification. We have shown that, in an avian in vitro system for chondrocyte differentiation, VEGF was produced and localized in cell clusters totally resembling in vivo cartilage. The factor was synthesized by hypertrophic chondrocytes and was released into their conditioned medium, which is highly chemotactic for endothelial cells. Antibodies against VEGF inhibited endothelial cell migration induced by chondrocyte conditioned media. Similarly, endothelial cell migration was inhibited also by antibodies directed against the VEGF receptor 2/Flk1 (VEGFR2). In avian and mammalian embryo long bones, immediately before vascular invasion, VEGF was distinctly localized in growth plate hypertrophic chondrocytes. In contrast, VEGF was not observed in quiescent and proliferating chondrocytes earlier in development. VEGF receptor 2 colocalized with the factor both in hypertrophic cartilage in vivo and hypertrophic cartilage engineered in vitro, suggesting an autocrine loop in chondrocytes at the time of their maturation to hypertrophic cells and of cartilage erosion. Regardless of cell exposure to exogenous VEGF, VEGFR-2 phosphorylation was recognized in cultured hypertrophic chondrocytes, supporting the idea of an autocrine functional activation of signal transduction in this non-endothelial cell type as a consequence of the endogenous VEGF production. In summary we propose that VEGF is actively responsible for hypertrophic cartilage neovascularization through a paracrine release by chondrocytes, with invading endothelial cells as a target. Furthermore, VEGF receptor localization and signal transduction in chondrocytes strongly support the hypothesis of a VEGF autocrine activity also in morphogenesis and differentiation of a mesoderm derived cell.


2020 ◽  
Author(s):  
Xiaolin Wang ◽  
Yongqian Bian ◽  
Yuejun Li ◽  
Jing Li ◽  
Congying Zhao ◽  
...  

Abstract Background: DARC (The Duffy antigen receptor for chemokines) is a kind of glycosylated membrane protein that binds to members of the CXC chemokine family associated with angiogenesis and has recently been reported to be implicated in diverse normal physiologic processes. This study aimed to investigate the involvement of DARC in angiogenesis, which is known to generate new capillary blood vessels from preexisting ones. Methods: HDMECs (Human dermal microvascular endothelial cells) were divided into two groups (DARC overexpression group, and control group). We used Brdu staining to detect cell proliferation, and wound healing assay to detect cell migration. Then tube formation assay were observed. Also, western blot and immunofluorescent staining were used to estimate the relationship between DARC and RhoA (Ras homolog gene family, member A). Results: HDMECs proliferation, migration, and tube formation were inhibited significantly when DARC was overexpressed intracellular. DARC impaired microfilament dynamics and intercellular connection in migrating cells, and RhoA activation underlay the effect of DARC on endothelial cell. Furthermore, DARC inhibited the formation of new capillaries in vitro. Conclusion: Our findings revealed the role of DARC in the angiogenic process and provided a novel mechanism for RhoA activation during endothelial cell migration and angiogenesis.


PLoS ONE ◽  
2019 ◽  
Vol 14 (11) ◽  
pp. e0225462 ◽  
Author(s):  
Alina Miron ◽  
Daniele Spinozzi ◽  
Sorcha Ní Dhubhghaill ◽  
Jessica T. Lie ◽  
Silke Oellerich ◽  
...  

Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1075 ◽  
Author(s):  
Panagiotis Tsakiroglou ◽  
Natalie E. VandenAkker ◽  
Cristian Del Bo’ ◽  
Patrizia Riso ◽  
Dorothy Klimis-Zacas

Cell migration is a critical process that is highly involved with normal and pathological conditions such as angiogenesis and wound healing. Important members of the RHO GTPase family are capable of controlling cytoskeleton conformation and altering motility characteristics of cells. There is a well-known relationship between small GTPases and the PI3K/AKT pathway. Endothelial cell migration can lead to angiogenesis, which is highly linked to wound healing processes. Phenolics, flavonoids, and anthocyanins are major groups of phytochemicals and are abundant in many natural products. Their antioxidant, antimicrobial, anti-inflammatory, antidiabetic, angiogenenic, neuroprotective, hepatoprotective, and cardioprotective properties have been extensively documented. This comprehensive review focuses on the in vitro and in vivo role of berry extracts and single anthocyanin and phenolic acid compounds on cell migration and angiogenesis. We aim to summarize the most recent published studies focusing on the experimental model, type of berry extract, source, dose/concentration and overall effect(s) of berry extracts, anthocyanins, and phenolic acids on the above processes.


2011 ◽  
Vol 52 (3) ◽  
pp. 320-328 ◽  
Author(s):  
Xiangpeng ZHENG ◽  
Sumathy MOHAN ◽  
Randal A. OTTO ◽  
Mohan NATARAJAN

Sign in / Sign up

Export Citation Format

Share Document