scholarly journals Role of Berry Anthocyanins and Phenolic Acids on Cell Migration and Angiogenesis: An Updated Overview

Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1075 ◽  
Author(s):  
Panagiotis Tsakiroglou ◽  
Natalie E. VandenAkker ◽  
Cristian Del Bo’ ◽  
Patrizia Riso ◽  
Dorothy Klimis-Zacas

Cell migration is a critical process that is highly involved with normal and pathological conditions such as angiogenesis and wound healing. Important members of the RHO GTPase family are capable of controlling cytoskeleton conformation and altering motility characteristics of cells. There is a well-known relationship between small GTPases and the PI3K/AKT pathway. Endothelial cell migration can lead to angiogenesis, which is highly linked to wound healing processes. Phenolics, flavonoids, and anthocyanins are major groups of phytochemicals and are abundant in many natural products. Their antioxidant, antimicrobial, anti-inflammatory, antidiabetic, angiogenenic, neuroprotective, hepatoprotective, and cardioprotective properties have been extensively documented. This comprehensive review focuses on the in vitro and in vivo role of berry extracts and single anthocyanin and phenolic acid compounds on cell migration and angiogenesis. We aim to summarize the most recent published studies focusing on the experimental model, type of berry extract, source, dose/concentration and overall effect(s) of berry extracts, anthocyanins, and phenolic acids on the above processes.

2021 ◽  
Vol 22 (7) ◽  
pp. 3687
Author(s):  
Joanna Homa ◽  
Alina Klosowska ◽  
Magdalena Chadzinska

Arginase is the manganese metalloenzyme catalyzing the conversion of l-arginine to l-ornithine and urea. In vertebrates, arginase is involved in the immune response, tissue regeneration, and wound healing and is an important marker of alternative anti-inflammatory polarization of macrophages. In invertebrates, data concerning the role of arginase in these processes are very limited. Therefore, in the present study, we focused on the changes in arginase activity in the coelomocytes of Eisenia andrei. We studied the effects of lipopolysaccharide (LPS), hydrogen peroxide (H2O2), heavy metals ions (e.g., Mn2+), parasite infection, wound healing, and short-term fasting (5 days) on arginase activity. For the first time in earthworms, we described arginase activity in the coelomocytes and found that it can be up-regulated upon in vitro stimulation with LPS and H2O2 and in the presence of Mn2+ ions. Moreover, arginase activity was also up-regulated in animals in vivo infected with nematodes or experiencing segment amputation, but not in fasting earthworms. Furthermore, we confirmed that the activity of coelomocyte arginase can be suppressed by l-norvaline. Our studies strongly suggest that similarly to the vertebrates, also in the earthworms, coelomocyte arginase is an important element of the immune response and wound healing processes.


Author(s):  
Gil Topman ◽  
Orna Sharabani-Yosef ◽  
Amit Gefen

A wound healing assay is simple but effective method to study cell migration in vitro. Cell migration in vitro was found to mimic migration in vivo to some extent [1,2]. In wound healing assays, a “wound” is created by either scraping or mechanically crushing cells in a monolayer, thereby forming a denuded area. Cells migrate into the denuded area to complete coverage, and thereby “heal” the wound. Micrographs at regular time intervals are captured during such experiments for analysis of the process of migration.


2000 ◽  
Vol 113 (1) ◽  
pp. 59-69 ◽  
Author(s):  
M.F. Carlevaro ◽  
S. Cermelli ◽  
R. Cancedda ◽  
F. Descalzi Cancedda

Vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) induces endothelial cell migration and proliferation in culture and is strongly angiogenic in vivo. VEGF synthesis has been shown to occur in both normal and transformed cells. The receptors for the factor have been shown to be localized mainly in endothelial cells, however, the presence of VEGF synthesis and the VEGF receptor in cells other than endothelial cells has been demonstrated. Neoangiogenesis in cartilage growth plate plays a fundamental role in endochondral ossification. We have shown that, in an avian in vitro system for chondrocyte differentiation, VEGF was produced and localized in cell clusters totally resembling in vivo cartilage. The factor was synthesized by hypertrophic chondrocytes and was released into their conditioned medium, which is highly chemotactic for endothelial cells. Antibodies against VEGF inhibited endothelial cell migration induced by chondrocyte conditioned media. Similarly, endothelial cell migration was inhibited also by antibodies directed against the VEGF receptor 2/Flk1 (VEGFR2). In avian and mammalian embryo long bones, immediately before vascular invasion, VEGF was distinctly localized in growth plate hypertrophic chondrocytes. In contrast, VEGF was not observed in quiescent and proliferating chondrocytes earlier in development. VEGF receptor 2 colocalized with the factor both in hypertrophic cartilage in vivo and hypertrophic cartilage engineered in vitro, suggesting an autocrine loop in chondrocytes at the time of their maturation to hypertrophic cells and of cartilage erosion. Regardless of cell exposure to exogenous VEGF, VEGFR-2 phosphorylation was recognized in cultured hypertrophic chondrocytes, supporting the idea of an autocrine functional activation of signal transduction in this non-endothelial cell type as a consequence of the endogenous VEGF production. In summary we propose that VEGF is actively responsible for hypertrophic cartilage neovascularization through a paracrine release by chondrocytes, with invading endothelial cells as a target. Furthermore, VEGF receptor localization and signal transduction in chondrocytes strongly support the hypothesis of a VEGF autocrine activity also in morphogenesis and differentiation of a mesoderm derived cell.


2020 ◽  
Author(s):  
Montserrat Lara-Velazquez ◽  
Natanael Zarco ◽  
Anna Carrano ◽  
Jordan Phillipps ◽  
Emily S Norton ◽  
...  

Abstract Background Glioblastomas (GBMs) are the most common primary brains tumors in adults with almost 100% recurrence rate. Patients with lateral ventricle proximal GBMs (LV-GBMs) exhibit worse survival compared to distal locations for reasons that remain unknown. One potential explanation is the proximity of these tumors to the cerebrospinal fluid (CSF) and its contained chemical cues that can regulate cellular migration and differentiation. We therefore investigated the role of CSF on GBM gene expression and the role of a CSF-induced gene, SERPINA3, in GBM malignancy in vitro and in vivo. Methods We utilized patient-derived CSF and primary cultures of GBM brain tumor initiating cells (BTICs). We determined the impact of SERPINA3 expression in glioma patients using TCGA database. SERPINA3 expression changes were evaluated at both the mRNA and protein levels. The effects of knockdown (KD) and overexpression (OE) of SERPINA3 on cell behavior were evaluated by transwell assay (for cell migration), and alamar blue and Ki67 (for viability and proliferation respectively). Stem cell characteristics on KD cells were evaluated by differentiation and colony formation experiments. Tumor growth was studied by intracranial and flank injections. Results GBM CSF induced a significant increase in BTIC migration accompanied by upregulation of the SERPINA3 gene. In patient samples and TCGA data we observed SERPINA3 to correlate directly with brain tumor grade and indirectly with GBM patient survival. Silencing of SERPINA3 induced a decrease in cell proliferation, migration, invasion, and stem cell characteristics, while SERPINA3 overexpression increased cell migration. In vivo, mice orthotopically-injected with SERPINA3 KD BTICs showed increased survival. Conclusions SERPINA3 plays a key role in GBM malignancy and its inhibition results in a better outcome using GBM preclinical models.


Blood ◽  
2010 ◽  
Vol 115 (20) ◽  
pp. 4130-4137 ◽  
Author(s):  
Jinmin Gao ◽  
Lei Sun ◽  
Lihong Huo ◽  
Min Liu ◽  
Dengwen Li ◽  
...  

Cylindromatosis (CYLD) is a deubiquitinase that was initially identified as a tumor suppressor and has recently been implicated in diverse normal physiologic processes. In this study, we have investigated the involvement of CYLD in angiogenesis, the formation of new blood vessels from preexisting ones. We find that knockdown of CYLD expression significantly impairs angiogenesis in vitro in both matrigel-based tube formation assay and collagen-based 3-dimensional capillary sprouting assay. Disruption of CYLD also remarkably inhibits angiogenic response in vivo, as evidenced by diminished blood vessel growth into the angioreactors implanted in mice. Mechanistic studies show that CYLD regulates angiogenesis by mediating the spreading and migration of vascular endothelial cells. Silencing of CYLD dramatically decreases microtubule dynamics in endothelial cells and inhibits endothelial cell migration by blocking the polarization process. Furthermore, we identify Rac1 activation as an important factor contributing to the action of CYLD in regulating endothelial cell migration and angiogenesis. Our findings thus uncover a previously unrecognized role for CYLD in the angiogenic process and provide a novel mechanism for Rac1 activation during endothelial cell migration and angiogenesis.


2019 ◽  
Vol 19 (10) ◽  
pp. 807-816 ◽  
Author(s):  
Laura Pietrovito ◽  
Giuseppina Comito ◽  
Matteo Parri ◽  
Elisa Giannoni ◽  
Paola Chiarugi ◽  
...  

Background:The bisphosphonate Zoledronic acid (ZA) is a potent osteoclast inhibitor currently used in the clinic to reduce osteoporosis and cancer-induced osteolysis. Moreover, ZA exerts an anti-tumor effect in several tumors. Despite this evidence, the relevance of ZA in prostate cancer (PCa) is not completely understood.Objective:To investigate the effect of ZA administration on the invasive properties of PC3 cells, which are characterised by RhoA-dependent amoeboid motility.Methods:The effect of ZA administration on the in vitro invasive properties of PC3 cells was evaluated by cell migration in 3D collagen matrices, immunofluorescence and Boyden assays or transendothelial migration. Lung retention and colonization assays were performed to assess the efficacy of ZA administration in vivo.Results:PC3 cells are characterised by RhoA-dependent amoeboid motility. We now report a clear inhibition of in vitro PC3 cell invasion and RhoA activity upon ZA treatment. Moreover, to confirm a specific role of ZA in the inhibition of amoeboid motility of PC3 cells, we demonstrate that ZA interferes only partially with PC3 cells showing a mesenchymal phenotype due to both treatment with conditioned medium of cancer associated fibroblasts or to the acquisition of chemoresistance. Furthermore, we demonstrate that ZA impairs adhesion to endothelial cells and the trans-endothelial cell migration, two essential properties characterising amoeboid motility and PC3 metastatic dissemination. In vivo experiments prove the ability of ZA to inhibit the metastatic process of PC3 cells as shown by the decrease in lung colonization.Conclusion:This study demonstrates that ZA inhibits Rho-dependent amoeboid motility of PC3 cells, thus suggesting ZA as a potential therapy to impede the metastatic dissemination of PC3 cells.


Cells ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 349
Author(s):  
Devandir A. de Souza Junior ◽  
Carolina Santana ◽  
Gabriel V. Vieira ◽  
Constance Oliver ◽  
Maria Celia Jamur

Previous studies from our laboratory have shown that during angiogenesis in vitro, rmMCP-7 (recombinant mouse mast cell protease-7) stimulates endothelial cell spreading and induces their penetration into the matrix. The ability of rmMCP-7 to induce angiogenesis in vivo was assessed in the present study using a directed in vivo angiogenesis assay (DIVAA™). Vessel invasion of the angioreactor was observed in the presence of rmMCP-7 but was not seen in the control. Since integrins are involved in endothelial cell migration, the relationship between rmMCP-7 and integrins during angiogenesis was investigated. Incubation with rmMCP-7 resulted in a reduction in the levels of integrin subunits αv and β1 on SVEC4-10 endothelial cells during angiogenesis in vitro. Furthermore, the degradation of integrin subunits occurs both through the direct action of rmMCP-7 and indirectly via the ubiquitin/proteasome system. Even in the presence of a proteasome inhibitor, incubation of endothelial cells with rmMCP-7 induced cell migration and tube formation as well as the beginning of loop formation. These data indicate that the direct degradation of the integrin subunits by rmMCP-7 is sufficient to initiate angiogenesis. The results demonstrate, for the first time, that mMCP-7 acts in angiogenesis through integrin degradation.


2020 ◽  
Vol 21 (13) ◽  
pp. 1301-1312 ◽  
Author(s):  
Sandeep K. Shukla ◽  
Ajay K. Sharma ◽  
Vanya Gupta ◽  
Aman Kalonia ◽  
Priyanka Shaw

: Wound research is an evolving science trying to unfold the complex untold mechanisms behind the wound healing cascade. In particular, interest is growing regarding the role of microorganisms in both acute and chronic wound healing. Microbial burden plays an important role in the persistence of chronic wounds, ultimately resulting in delayed wound healing. It is therefore important for clinicians to understand the evolution of infection science and its various etiologies. Therefore, to understand the role of bacterial biofilm in chronic wound pathogenesis, various in vitro and in vivo models are required to investigate biofilms in wound-like settings. Infection models should be refined comprising an important signet of biofilms. These models are eminent for translational research to obtain data for designing an improved wound care formulation. However, all the existing models possess limitations and do not fit properly in the model frame for developing wound care agents. Among various impediments, one of the major drawbacks of such models is that the wound they possess does not mimic the wound a human develops. Therefore, a novel wound infection model is required which can imitate the human wounds. : This review article mainly discusses various in vitro and in vivo models showing microbial colonization, their advantages and challenges. Apart from these models, there are also present ex vivo wound infection models, but this review mainly focused on various in vitro and in vivo models available for studying wound infection in controlled conditions. This information might be useful in designing an ideal wound infection model for developing an effective wound healing formulation.


Sign in / Sign up

Export Citation Format

Share Document