scholarly journals Modeling the removal of Reactive Red 120 dye from aqueous effluents by activated carbon

2020 ◽  
Vol 82 (4) ◽  
pp. 651-662
Author(s):  
Kods Oueslati ◽  
Eder C. Lima ◽  
Fakher Ayachi ◽  
Mariene R. Cunha ◽  
Abdelmottaleb Ben Lamine

Abstract The adsorption isotherms of Reactive Red 120 (RR-120) on Brazilian pine-fruit shell activated carbon, at six temperatures (298, 303, 308, 313, 318 and 323 K) and pH = 6, were determined and interpreted using a double layer model with one energy. A statistical physics treatment established the formulation of this model. Steric and energetic parameters related to the adsorption process, such as the number of adsorbed molecules per site, the receptor sites density and the concentration at half-saturation, have been considered. Thermodynamic potential functions such as entropy, internal energy and Gibbs free enthalpy are analyzed, and the choice of the models is based on assumptions in correlation with experimental conditions. By numerical fitting, the investigated parameters were deduced. The theoretical expressions provide a good understanding and interpretation of the adsorption isotherms at the microscopic level. We believe that our work contributes to new theoretical insights on the dye adsorption in order to know the physical nature of the adsorption process.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Manel Ben Yahia ◽  
Sarra Wjihi

Abstract An advanced statistical physics model has been applied to study the hydrogen adsorption isotherm on two modified types of activated carbon, namely granular coal activated carbon (AC (GC)) and coconut shell activated carbon (AC (CS)). This model is established with the statistical physics approach. It is a more general model including various parameters having a defined physico-chemical sense which were discussed at different temperatures. Hence new physic-chemical interpretations of the adsorption process of hydrogen are provided. The analysis of the hydrogen uptake capacities at saturation showed that the AC (GC) adsorbent displayed a high adsorption capacity (3.21 mg/g). This due to the contribution of the number of hydrogen molecules per site (1.27) associated with the receptor sites density (0.74 mg/g) and the number of formed layers (3.42). The modeling results suggested that the hydrogen adsorption occurred by non-parallel positions on the two tested adsorbents thus evincing that the adsorption cannot be other than a multi-molecular process. The calculated adsorption energies globally varied from 7.01 to 12.92 kJ/mol, confirming the physical nature of the adsorption process for both studied systems. The thermodynamic functions, namely internal energy, enthalpy and entropy were estimated to better analyze the hydrogen sorption process. In summary, the statistical physics analysis provided reliable concrete physico-chemical interpretations of hydrogen adsorption process on carbon-based adsorbents with various microstructures to develop a storage compounds with a suitable framework for a hydrogen storage structure.


2017 ◽  
Vol 6 (1) ◽  
pp. 1 ◽  
Author(s):  
Mochamad Lutfi Firdaus ◽  
Noli Krisnanto ◽  
Wiwit Alwi ◽  
Ronald Muhammad ◽  
Muhamad Allan Serunting

Synthetic dye wastewater from textile industries is characterized by strong color, high temperature, variable pH and high chemical oxygen demand (COD). The strong color of wastewater affects aesthetic and water transparency of water bodies. The metabolites could be toxic to aquatic biota and posing a potential hazard to human health. Eventually, it will cause severe environmental problems. One of method that has advantages in term of simplicity to remove synthetic dyes is adsorption. Environmentally benign and low-cost materials to make adsorbent are biomass-based materials. Two different biomaterial wastes of rice straw and oil palm midrib were used in this study to develop activated carbon adsorbents. These adsorbents were applied for the removal of Naphtol AS-G dye in aqueous solution. The effects of solution pH, adsorbents masses and contact time on dye adsorption were evaluated based on batch experiments. Removal of dye can be achieved within 60 minutes at a wide pH range starting from 4 to 8. At lower pH, synthetic dye removal was decreasing probably due to protonation of adsorbent’s active sites. The adsorption isotherms based on Langmuir and Freundlich models were analyzed. The isotherms analysis indicated that the adsorption by rice straw and oil palm can be represented by Langmuir and Freundlich isotherm model, respectively. Adsorption isotherms of Naphtol AS-G onto activated carbon are favorable with high adsorption capacity for both biomaterials. The mechanisms of color removal by activated carbon involved chemical and physical adsorption, in accordance with both the Langmuir and Freundlich models. The calculated maximum dye adsorption capacities onto rice straw and oil palm midrib activated carbon were 55.86 and 69.44 mg/g, respectively. Adsorption using biomass-based activated carbon offers a good technique for textile wastewater treatment as it could remove up to 95% of the color intensity besides reducing other pollutants such as COD, nitrate and phosphate. 


2016 ◽  
Vol 214 ◽  
pp. 220-230 ◽  
Author(s):  
Lotfi Sellaoui ◽  
Tolga Depci ◽  
Ali Rıza Kul ◽  
Salah Knani ◽  
Abdelmottaleb Ben Lamine

2011 ◽  
Vol 699 ◽  
pp. 245-264 ◽  
Author(s):  
A. Xavier ◽  
J. Gandhi Rajan ◽  
D. Usha ◽  
R Sathya

Methylene blue is a heterocyclic aromatic chemical compound with the molecular formula C16H18N3SCl. It has used in the biology and chemistry field. At room temperature, it appears as a solid, odourless dark green powder that yields blue solution when dissolved in water. As a part of removal of methylene blue dye from textile and leather industrial wastes, using activated carbon as adsorbents namely, commercial activated carbon (CAC), rose apple carbon (RAC), coconut shell carbon (CSC) and saw dust carbon (SDC). The percentage of Methylene blue adsorbed increases with decrease in initial concentration and particle size of adsorbent and increased with increase in contact time, temperature and dose of adsorbents. The pH is highly sensitive for dye adsorption process. The adsorption process followed first order kinetics and the adsorption data the modeled with Freundlich and Langmuir isotherms. The first kinetic equations like Natarajan Khalaf, Lagergren, Bhattacharya and Venkobhachar and intra particle diffusion were found to be applicable. A comparative account of the adsorption capacity of various carbons has been made. These activated carbons are alternative to commercial AC for the removal dyes in General and MB is particular. These results are reported highly efficient and effective and low cost adsorbent for the MB. The thermodynamics parameters are also studied and it obeys spontaneous process. The results are confirmed by before and after adsorption process with the help of the following instrumental techniques viz., FT-IR, UV-Visible Spectrophotometer and SEM photos.


Alotrop ◽  
2017 ◽  
Vol 1 (1) ◽  
Author(s):  
Melfi Puspita ◽  
M. Lutfi Firdaus ◽  
Nurhamidah Nurhamidah

The problem of environmental polution caused by waste of batik industry lately is increasing, so it needed a method to overcome that problem. The aim of this study was to determine the ability of activated charcoal from coconut fiber palm in adsorbing Reactive Red-120 and Direct Green-26 dyes in waste of batik along with determining the parameters of isotherms adsorption using UV-Vis Spectrophotometer analysis method. Variations of pH, contact time, adsorbent weight and temperature were carried out as variable to obtain optimum conditions of the adsorption process. The optimum of conditions for Reactive Red-120  occured at pH 3 and a contact time of 30 minutes, while Direct Green-26  occurred at pH 4 and a contact time of 40 minutes, with each adsorbent weight 150 mg and the temperature 30 °C. Adsorption isotherms determined by Freundlich and Langmuir models with maximum adsorption capacity (Qmax) were obtained for the Reactive Red-120  was 400 mg/g, while Direct Green-26 is 169 mg/g. 


2015 ◽  
Vol 72 (10) ◽  
pp. 1861-1868 ◽  
Author(s):  
Y. Z. Zhang ◽  
J. Li ◽  
W. J. Li ◽  
Y. Li

Sunset yellow (SY) FCF is a hazardous azo dye pollutant found in food processing effluent. This study investigates the use of diatomaceous earth with chitosan (DE@C) as a modified adsorbent for the removal of SY from wastewater. Fourier transform infrared spectroscopy results indicate the importance of functional groups during the adsorption of SY. The obtained N2 adsorption–desorption isotherm values accord well with IUPAC type II. Our calculations determined a surface area of 69.68 m2 g−1 for DE@C and an average pore diameter of 4.85 nm. Using response surface methodology, optimized conditions of process variables for dye adsorption were achieved. For the adsorption of SY onto DE@C, this study establishes mathematical models for the optimization of pH, contact time and initial dye concentration. Contact time plays a greater role in the adsorption process than either pH or initial dye concentration. According to the adjusted correlation coefficient (adj-R2 > 0.97), the models used here are suitable for illustration of the adsorption process. Theoretical experimental conditions included a pH of 2.40, initial dye concentration of 113 mg L−1 and 30.37 minutes of contact time. Experimental values for the adsorption rate (92.54%) were close to the values predicted by the models (95.29%).


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2241
Author(s):  
Rauf Foroutan ◽  
Seyed Jamaleddin Peighambardoust ◽  
Seyed Hadi Peighambardoust ◽  
Mirian Pateiro ◽  
Jose M. Lorenzo

Activated carbon prepared from lemon (Citrus limon) wood (ACL) and ACL/Fe3O4 magnetic nanocomposite were effectively used to remove the cationic dye of crystal violet (CV) from aqueous solutions. The results showed that Fe3O4 nanoparticles were successfully placed in the structure of ACL and the produced nanocomposites showed superior magnetic properties. It was found that pH was the most effective parameter in the CV dye adsorption and pH of 9 gave the maximum adsorption efficiency of 93.5% and 98.3% for ACL and ACL/Fe3O4, respectively. The Dubinin–Radushkevich (D-R) and Langmuir models were selected to investigate the CV dye adsorption equilibrium behavior for ACL and ACL/Fe3O4, respectively. A maximum adsorption capacity of 23.6 and 35.3 mg/g was obtained for ACL and ACL/Fe3O4, respectively indicating superior adsorption capacity of Fe3O4 nanoparticles. The kinetic data of the adsorption process followed the pseudo-second order (PSO) kinetic model, indicating that chemical mechanisms may have an effect on the CV dye adsorption. The negative values obtained for Gibb’s free energy parameter (−20 < ΔG < 0 kJ/mol) showed that the adsorption process using both types of the adsorbents was physical. Moreover, the CV dye adsorption enthalpy (ΔH) values of −45.4 for ACL and −56.9 kJ/mol for ACL/Fe3O4 were obtained indicating that the adsorption process was exothermic. Overall, ACL and ACL/Fe3O4 magnetic nanocomposites provide a novel and effective type of adsorbents to remove CV dye from the aqueous solutions.


2012 ◽  
Vol 241-242 ◽  
pp. 146-153 ◽  
Author(s):  
Natali F. Cardoso ◽  
Eder C. Lima ◽  
Betina Royer ◽  
Marta V. Bach ◽  
Guilherme L. Dotto ◽  
...  

2011 ◽  
Vol 671 ◽  
pp. 187-204
Author(s):  
A. Xavier ◽  
R Sathya ◽  
J. Gandhi Rajan ◽  
R. Nagarathnam

Many industries use dyes and pigments to colorize their products. Large amount different types of dyes enter in to the environment. These dyes are invariably left in the industrial wastes. As a part of removal of Bismark Brown dye from textile and leather industrial wastes, using activated carbon as adsorbents namely, commercial activated carbon (CAC), rose apple carbon (RAC), coconut shell carbon (CSC) and saw dust carbon (SDC). The percentage removal of Bismark-Brown adsorbed increases with decrease in initial concentration and particle size of adsorbent and increased with increase in contact time, temperature and dose of adsorbent. The pH is highly sensitive for dye adsorption process. The adsorption process followed first order kinetics and the adsorption data with Freundlich and Langmuir isotherm models. The first kinetic equations like Natarajan Khalaf, Lagergren, Bhattacharya and Venkobhachar and intra-particle diffusion were found to be applicable. A comparative account of the adsorption capacity of various carbons has been made. These activated carbons are alternative to commercial AC for the removal dyes in General and Bismark-brown (BB) is particular. These results are reported highly efficient and effective and low cost adsorbent for the BB. The thermodynamics parameters are also studied and it obeys spontaneous process. The results are confirmed by before and after adsorption process with the help of the following instrumental techniques viz., FT-IR, UV-Visible Spectrophotometer and SEM analyze.


Sign in / Sign up

Export Citation Format

Share Document